Mctt.Algorithmic.Subtyping.Definitions
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Export NbE.
From Mctt.Core.Syntactic Require Export SystemOpt.
Import Syntax_Notations.
Reserved Notation "Γ ⊢a A ⊆ A'" (in custom judg at level 80, Γ custom exp, A custom exp, A' custom exp).
Reserved Notation "⊢anf A ⊆ A'" (in custom judg at level 80, A custom nf, A' custom nf).
Definition not_univ_pi (A : nf) : Prop :=
match A with
| nf_typ _ | nf_pi _ _ => False
| _ => True
end.
Inductive alg_subtyping_nf : nf -> nf -> Prop :=
| asnf_refl : forall A A',
not_univ_pi A ->
A = A' ->
{{ ⊢anf A ⊆ A' }}
| asnf_univ : forall i j,
i <= j ->
{{ ⊢anf Type@i ⊆ Type@j }}
| asnf_pi : forall A B A' B',
A = A' ->
{{ ⊢anf B ⊆ B' }} ->
{{ ⊢anf Π A B ⊆ Π A' B' }}
where "⊢anf A ⊆ A'" := (alg_subtyping_nf A A') (in custom judg) : type_scope.
Inductive alg_subtyping : ctx -> typ -> typ -> Prop :=
| alg_subtyp_run : forall Γ A B A' B',
nbe_ty Γ A A' ->
nbe_ty Γ B B' ->
{{ ⊢anf A' ⊆ B' }} ->
{{ Γ ⊢a A ⊆ B }}
where "Γ ⊢a A ⊆ B" := (alg_subtyping Γ A B) (in custom judg) : type_scope.
#[export]
Hint Constructors alg_subtyping_nf alg_subtyping: mctt.
From Mctt.Core.Semantic Require Export NbE.
From Mctt.Core.Syntactic Require Export SystemOpt.
Import Syntax_Notations.
Reserved Notation "Γ ⊢a A ⊆ A'" (in custom judg at level 80, Γ custom exp, A custom exp, A' custom exp).
Reserved Notation "⊢anf A ⊆ A'" (in custom judg at level 80, A custom nf, A' custom nf).
Definition not_univ_pi (A : nf) : Prop :=
match A with
| nf_typ _ | nf_pi _ _ => False
| _ => True
end.
Inductive alg_subtyping_nf : nf -> nf -> Prop :=
| asnf_refl : forall A A',
not_univ_pi A ->
A = A' ->
{{ ⊢anf A ⊆ A' }}
| asnf_univ : forall i j,
i <= j ->
{{ ⊢anf Type@i ⊆ Type@j }}
| asnf_pi : forall A B A' B',
A = A' ->
{{ ⊢anf B ⊆ B' }} ->
{{ ⊢anf Π A B ⊆ Π A' B' }}
where "⊢anf A ⊆ A'" := (alg_subtyping_nf A A') (in custom judg) : type_scope.
Inductive alg_subtyping : ctx -> typ -> typ -> Prop :=
| alg_subtyp_run : forall Γ A B A' B',
nbe_ty Γ A A' ->
nbe_ty Γ B B' ->
{{ ⊢anf A' ⊆ B' }} ->
{{ Γ ⊢a A ⊆ B }}
where "Γ ⊢a A ⊆ B" := (alg_subtyping Γ A B) (in custom judg) : type_scope.
#[export]
Hint Constructors alg_subtyping_nf alg_subtyping: mctt.