Mctt.Core.Completeness.ContextCases

From Coq Require Import Morphisms_Relations.

From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness Require Import LogicalRelation UniverseCases.
Import Domain_Notations.

Proposition valid_ctx_empty :
  {{ }}.
Proof.
  do 2 econstructor.
  apply Equivalence_Reflexive.
Qed.

#[export]
Hint Resolve valid_ctx_empty : mctt.

Lemma rel_ctx_extend : forall {Γ Γ' A A' i},
    {{ Γ Γ' }} ->
    {{ Γ A A' : Type@i }} ->
    {{ Γ, A Γ', A' }}.
Proof with intuition.
  intros * [env_relΓΓ'] [env_relΓ]%rel_exp_of_typ_inversion.
  pose env_relΓ.
  destruct_conjs.
  handle_per_ctx_env_irrel.
  eexists.
  per_ctx_env_econstructor; eauto.
  - instantiate (1 := fun ρ ρ' (equiv_ρ_ρ' : env_relΓ ρ ρ') m m' =>
                        forall i R,
                          rel_typ i A ρ A' ρ' R ->
                          R m m').
    intros.
    (on_all_hyp: destruct_rel_by_assumption env_relΓ).
    destruct_by_head per_univ.
    econstructor; eauto.
    apply -> per_univ_elem_morphism_iff; eauto.
    split; intros; destruct_by_head rel_typ; handle_per_univ_elem_irrel...
    eapply H5.
    mauto.
  - apply Equivalence_Reflexive.
Qed.

Lemma rel_ctx_extend' : forall {Γ A i},
    {{ Γ A : Type@i }} ->
    {{ Γ, A }}.
Proof.
  intros.
  eapply rel_ctx_extend; eauto.
  destruct H as [? []].
  eexists. eassumption.
Qed.

#[export]
Hint Resolve rel_ctx_extend rel_ctx_extend' : mctt.

Lemma rel_ctx_sub_empty :
  {{ SubE <: }}.
Proof. mauto. Qed.

Lemma rel_ctx_sub_extend : forall Γ Δ i A A',
  {{ SubE Γ <: Δ }} ->
  {{ Γ A : Type@i }} ->
  {{ Δ A' : Type@i }} ->
  {{ Γ A A' }} ->
  {{ SubE Γ , A <: Δ , A' }}.
Proof.
  intros * ? []%rel_ctx_extend' []%rel_ctx_extend' [env_relΓ].
  pose env_relΓ.
  destruct_conjs.
  econstructor; mauto; intros.
  (on_all_hyp: destruct_rel_by_assumption env_relΓ).
  destruct_by_head rel_exp.
  simplify_evals.
  eassumption.
Qed.

#[export]
Hint Resolve rel_ctx_sub_empty rel_ctx_sub_extend : mctt.