Mctt.Extraction.Subtyping
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Algorithmic Require Export Subtyping.
From Mctt.Extraction Require Import NbE PseudoMonadic.
From Equations Require Import Equations.
Import Domain_Notations.
#[local]
Ltac subtyping_tac :=
intros;
lazymatch goal with
| |- {{ ⊢anf ^_ ⊆ ^_ }} =>
subst;
mauto 4;
try congruence;
econstructor; simpl; trivial
| |- ~ {{ ⊢anf ^_ ⊆ ^_ }} =>
let H := fresh "H" in
intro H; dependent destruction H; simpl in *;
try lia;
try congruence
end.
#[tactic="subtyping_tac",derive(equations=no,eliminator=no)]
Equations subtyping_nf_impl A B : { {{ ⊢anf A ⊆ B }} } + {~ {{ ⊢anf A ⊆ B }} } :=
| n{{{ Type@i }}}, n{{{ Type@j }}} =>
let*b _ := Compare_dec.le_lt_dec i j while _ in
pureb _
| n{{{ Π A B }}}, n{{{ Π A' B' }}} =>
let*b _ := nf_eq_dec A A' while _ in
let*b _ := subtyping_nf_impl B B' while _ in
pureb _
From Mctt.Core Require Import Base.
From Mctt.Algorithmic Require Export Subtyping.
From Mctt.Extraction Require Import NbE PseudoMonadic.
From Equations Require Import Equations.
Import Domain_Notations.
#[local]
Ltac subtyping_tac :=
intros;
lazymatch goal with
| |- {{ ⊢anf ^_ ⊆ ^_ }} =>
subst;
mauto 4;
try congruence;
econstructor; simpl; trivial
| |- ~ {{ ⊢anf ^_ ⊆ ^_ }} =>
let H := fresh "H" in
intro H; dependent destruction H; simpl in *;
try lia;
try congruence
end.
#[tactic="subtyping_tac",derive(equations=no,eliminator=no)]
Equations subtyping_nf_impl A B : { {{ ⊢anf A ⊆ B }} } + {~ {{ ⊢anf A ⊆ B }} } :=
| n{{{ Type@i }}}, n{{{ Type@j }}} =>
let*b _ := Compare_dec.le_lt_dec i j while _ in
pureb _
| n{{{ Π A B }}}, n{{{ Π A' B' }}} =>
let*b _ := nf_eq_dec A A' while _ in
let*b _ := subtyping_nf_impl B B' while _ in
pureb _
Pseudo-monadic syntax for the next catch-all branch
generates some unsolved obligations, so we directly match on
nf_eq_dec A B here.
The definitions of subtyping_nf_impl already come with soundness proofs,
as well as obvious completeness.
Theorem subtyping_nf_impl_complete : forall A B,
{{ ⊢anf A ⊆ B }} ->
exists H, subtyping_nf_impl A B = left H.
Proof.
intros; dec_complete.
Qed.
Inductive subtyping_order G A B :=
| subtyping_order_run :
nbe_ty_order G A ->
nbe_ty_order G B ->
subtyping_order G A B.
#[local]
Hint Constructors subtyping_order : mctt.
Lemma subtyping_order_sound : forall G A B,
{{ G ⊢a A ⊆ B }} ->
subtyping_order G A B.
Proof.
intros * H.
dependent destruction H.
mauto using nbe_ty_order_sound.
Qed.
#[local]
Ltac subtyping_impl_tac1 :=
match goal with
| H : subtyping_order _ _ _ |- _ => progressive_invert H
| H : nbe_ty_order _ _ |- _ => progressive_invert H
end.
#[local]
Ltac subtyping_impl_tac :=
repeat subtyping_impl_tac1; try econstructor; mauto.
#[tactic="subtyping_impl_tac",derive(equations=no,eliminator=no)]
Equations subtyping_impl G A B (H : subtyping_order G A B) :
{ {{G ⊢a A ⊆ B}} } + { ~ {{ G ⊢a A ⊆ B }} } :=
| G, A, B, H =>
let (a, Ha) := nbe_ty_impl G A _ in
let (b, Hb) := nbe_ty_impl G B _ in
let*b _ := subtyping_nf_impl a b while _ in
pureb _.
Next Obligation.
progressive_inversion.
functional_nbe_rewrite_clear.
contradiction.
Qed.
Similar for subtyping_impl.
Theorem subtyping_impl_complete' : forall G A B,
{{G ⊢a A ⊆ B}} ->
forall (H : subtyping_order G A B),
exists H', subtyping_impl G A B H = left H'.
Proof.
intros; dec_complete.
Qed.
#[local]
Hint Resolve subtyping_order_sound subtyping_impl_complete' : mctt.
Theorem subtyping_impl_complete : forall G A B,
{{G ⊢a A ⊆ B}} ->
exists H H', subtyping_impl G A B H = left H'.
Proof.
repeat unshelve mauto.
Qed.