Mctt.Extraction.Subtyping

From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Algorithmic Require Export Subtyping.
From Mctt.Extraction Require Import NbE PseudoMonadic.
From Equations Require Import Equations.
Import Domain_Notations.

#[local]
Ltac subtyping_tac :=
  intros;
  lazymatch goal with
  | |- {{ anf ^_ ^_ }} =>
      subst;
      mauto 4;
      try congruence;
      econstructor; simpl; trivial
  | |- ~ {{ anf ^_ ^_ }} =>
      let H := fresh "H" in
      intro H; dependent destruction H; simpl in *;
      try lia;
      try congruence
  end.

#[tactic="subtyping_tac",derive(equations=no,eliminator=no)]
Equations subtyping_nf_impl A B : { {{ anf A B }} } + {~ {{ anf A B }} } :=
| n{{{ Type@i }}}, n{{{ Type@j }}} =>
    let*b _ := Compare_dec.le_lt_dec i j while _ in
    pureb _
| n{{{ Π A B }}}, n{{{ Π A' B' }}} =>
    let*b _ := nf_eq_dec A A' while _ in
    let*b _ := subtyping_nf_impl B B' while _ in
    pureb _
Pseudo-monadic syntax for the next catch-all branch generates some unsolved obligations, so we directly match on nf_eq_dec A B here.
| A, B with nf_eq_dec A B => {
  | left _ => left _
  | right _ => right _
  }.

The definitions of subtyping_nf_impl already come with soundness proofs, as well as obvious completeness.

Theorem subtyping_nf_impl_complete : forall A B,
    {{ anf A B }} ->
    exists H, subtyping_nf_impl A B = left H.
Proof.
  intros; dec_complete.
Qed.

Inductive subtyping_order G A B :=
| subtyping_order_run :
  nbe_ty_order G A ->
  nbe_ty_order G B ->
  subtyping_order G A B.
#[local]
Hint Constructors subtyping_order : mctt.

Lemma subtyping_order_sound : forall G A B,
    {{ G a A B }} ->
    subtyping_order G A B.
Proof.
  intros * H.
  dependent destruction H.
  mauto using nbe_ty_order_sound.
Qed.

#[local]
Ltac subtyping_impl_tac1 :=
  match goal with
  | H : subtyping_order _ _ _ |- _ => progressive_invert H
  | H : nbe_ty_order _ _ |- _ => progressive_invert H
  end.

#[local]
Ltac subtyping_impl_tac :=
  repeat subtyping_impl_tac1; try econstructor; mauto.

#[tactic="subtyping_impl_tac",derive(equations=no,eliminator=no)]
Equations subtyping_impl G A B (H : subtyping_order G A B) :
  { {{G a A B}} } + { ~ {{ G a A B }} } :=
| G, A, B, H =>
    let (a, Ha) := nbe_ty_impl G A _ in
    let (b, Hb) := nbe_ty_impl G B _ in
    let*b _ := subtyping_nf_impl a b while _ in
    pureb _.
Next Obligation.
  progressive_inversion.
  functional_nbe_rewrite_clear.
  contradiction.
Qed.

Similar for subtyping_impl.

Theorem subtyping_impl_complete' : forall G A B,
    {{G a A B}} ->
    forall (H : subtyping_order G A B),
      exists H', subtyping_impl G A B H = left H'.
Proof.
  intros; dec_complete.
Qed.

#[local]
Hint Resolve subtyping_order_sound subtyping_impl_complete' : mctt.

Theorem subtyping_impl_complete : forall G A B,
    {{G a A B}} ->
    exists H H', subtyping_impl G A B H = left H'.
Proof.
  repeat unshelve mauto.
Qed.