Mctt.Core.Soundness.ContextCases
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Soundness Require Import LogicalRelation.
Import Domain_Notations.
Lemma glu_rel_ctx_empty : {{ ⊩ ⋅ }}.
Proof.
do 2 econstructor; reflexivity.
Qed.
#[export]
Hint Resolve glu_rel_ctx_empty : mctt.
Lemma glu_rel_ctx_extend : forall {Γ A i},
{{ ⊩ Γ }} ->
{{ Γ ⊩ A : Type@i }} ->
{{ ⊩ Γ, A }}.
Proof.
intros * [Sb] HA.
assert {{ Γ ⊢ A : Type@i }} by mauto 3.
invert_glu_rel_exp HA.
eexists.
econstructor; mauto 3; reflexivity.
Qed.
#[export]
Hint Resolve glu_rel_ctx_extend : mctt.
From Mctt.Core Require Import Base.
From Mctt.Core.Soundness Require Import LogicalRelation.
Import Domain_Notations.
Lemma glu_rel_ctx_empty : {{ ⊩ ⋅ }}.
Proof.
do 2 econstructor; reflexivity.
Qed.
#[export]
Hint Resolve glu_rel_ctx_empty : mctt.
Lemma glu_rel_ctx_extend : forall {Γ A i},
{{ ⊩ Γ }} ->
{{ Γ ⊩ A : Type@i }} ->
{{ ⊩ Γ, A }}.
Proof.
intros * [Sb] HA.
assert {{ Γ ⊢ A : Type@i }} by mauto 3.
invert_glu_rel_exp HA.
eexists.
econstructor; mauto 3; reflexivity.
Qed.
#[export]
Hint Resolve glu_rel_ctx_extend : mctt.