Mctt.Core.Syntactic.System.Tactics

From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Syntactic.System Require Export Definitions Lemmas.
Import Syntax_Notations.

#[global]
Ltac pi_univ_level_tac :=
  match goal with
  | |- {{ ^_ s ^_ : ^_ }} => mauto 4
  | H : {{ ^?Δ ^?A : Type@?j }} |- {{ ^?Δ , ^?A ^?B : Type@?i }} =>
      eapply lift_exp_max_right; mauto 4
  | |- {{ ^?Δ ^?A : Type@?j }} =>
      eapply lift_exp_max_left; mauto 4
  end.

#[export]
Hint Rewrite -> wf_exp_eq_pi_sub using pi_univ_level_tac : mctt.

#[local]
Ltac invert_wf_ctx1 H :=
  match type of H with
  | {{ ^?Γ, ^?A }} =>
      let := fresh "HΓ" in
      let HAi := fresh "HAi" in
      pose proof ctx_decomp H as [ HAi];
      match goal with
      | _: {{ Γ A : Type@_ }} |- _ => clear HAi
      | _: __mark__ _ {{ Γ A : Type@_ }} |- _ => clear HAi
      | _ =>
          let i := fresh "i" in
          let HA := fresh "HA" in
          destruct HAi as [i HA]
      end
  end.

Ltac invert_wf_ctx :=
  (on_all_hyp: fun H => invert_wf_ctx1 H);
  clear_dups.

Ltac gen_core_presup H :=
  match type of H with
  | {{ ^?Γ ^?Δ }} =>
      let := fresh "HΓ" in
      let := fresh "HΔ" in
      pose proof presup_ctx_eq H as [ ]
  | {{ ^?Γ ^?Δ }} =>
      let := fresh "HΓ" in
      let := fresh "HΔ" in
      pose proof presup_ctx_sub H as [ ]
  | {{ ^?Γ ^?M : ^?A }} =>
      let := fresh "HΓ" in
      let HAi := fresh "HAi" in
      pose proof presup_exp H as [ HAi];
      match goal with
      | _: {{ Γ A : Type@_ }} |- _ => clear HAi
      | _: __mark__ _ {{ Γ A : Type@_ }} |- _ => clear HAi
      | _ =>
          let i := fresh "i" in
          let HA := fresh "HA" in
          destruct HAi as [i HA]
      end
  | {{ ^?Γ s ^: ^?Δ }} =>
      let := fresh "HΓ" in
      let := fresh "HΔ" in
      pose proof presup_sub H as [ ]
  end.

Ltac gen_lookup_presup H :=
  match type of H with
  | {{ #?x : ^?A ^?Γ }} =>
      match goal with
      | _: {{ Γ A : Type@_ }} |- _ => fail
      | _: __mark__ _ {{ Γ A : Type@_ }} |- _ => fail
      | _ =>
          let i := fresh "i" in
          let HA := fresh "HA" in
          pose proof presup_ctx_lookup_typ ltac:(eassumption) H as [i HA]
      end
  end.

Ltac gen_core_presups := (on_all_hyp: fun H => gen_core_presup H); invert_wf_ctx; (on_all_hyp: fun H => gen_lookup_presup H); clear_dups.