Mctt.Core.Soundness.LogicalRelation.CoreLemmas
From Coq Require Import Equivalence Morphisms Morphisms_Prop Morphisms_Relations Relation_Definitions RelationClasses.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Soundness.LogicalRelation Require Import CoreTactics Definitions.
From Mctt.Core.Soundness.Weakening Require Export Lemmas.
Import Domain_Notations.
Lemma glu_nat_per_nat : forall Γ M a,
glu_nat Γ M a ->
{{ Dom a ≈ a ∈ per_nat }}.
Proof.
induction 1; mauto.
Qed.
#[local]
Hint Resolve glu_nat_per_nat : mctt.
Lemma glu_nat_escape : forall Γ M a,
glu_nat Γ M a ->
{{ ⊢ Γ }} ->
{{ Γ ⊢ M : ℕ }}.
Proof.
induction 1; intros;
try match goal with
| H : _ |- _ => solve [gen_presup H; mauto]
end.
assert {{ Γ ⊢w Id : Γ }} by mauto.
match_by_head (per_bot m m) ltac:(fun H => specialize (H (length Γ)) as [M' []]).
clear_dups.
assert {{ Γ ⊢ M[Id] ≈ M' : ℕ }} by mauto.
gen_presups.
mauto.
Qed.
#[export]
Hint Resolve glu_nat_escape : mctt.
Lemma glu_nat_resp_ctx_eq : forall Γ M a Δ,
glu_nat Γ M a ->
{{ ⊢ Γ ≈ Δ }} ->
glu_nat Δ M a.
Proof.
induction 1; intros; mauto.
Qed.
#[local]
Hint Resolve glu_nat_resp_ctx_eq : mctt.
Add Parametric Morphism : glu_nat
with signature wf_ctx_eq ==> eq ==> eq ==> iff as glu_ctx_env_sub_morphism_iff1.
Proof.
split; mauto using glu_nat_resp_ctx_eq.
Qed.
Lemma glu_nat_resp_exp_eq : forall Γ M a,
glu_nat Γ M a ->
forall M',
{{ Γ ⊢ M ≈ M' : ℕ }} ->
glu_nat Γ M' a.
Proof.
induction 1; intros; mauto 4.
econstructor; trivial.
intros.
transitivity {{{ M[σ] }}}; mauto.
Qed.
#[local]
Hint Resolve glu_nat_resp_exp_eq : mctt.
Add Parametric Morphism Γ : (glu_nat Γ)
with signature wf_exp_eq Γ {{{ ℕ }}} ==> eq ==> iff as glu_ctx_env_sub_morphism_iff2.
Proof.
split; mauto using glu_nat_resp_exp_eq.
Qed.
Lemma glu_nat_readback : forall Γ M a,
glu_nat Γ M a ->
forall Δ σ M',
{{ Δ ⊢w σ : Γ }} ->
{{ Rnf ⇓ ℕ a in length Δ ↘ M' }} ->
{{ Δ ⊢ M[σ] ≈ M' : ℕ }}.
Proof.
induction 1; intros; progressive_inversion; gen_presups.
- transitivity {{{ zero[σ] }}}; mauto 4.
- assert {{ Δ ⊢ M'[σ] ≈ M0 : ℕ }} by mauto 4.
transitivity {{{ (succ M')[σ] }}}; mauto 3.
transitivity {{{ succ M'[σ] }}}; mauto 4.
- mauto 4.
Qed.
#[global]
Ltac simpl_glu_rel :=
apply_equiv_left;
repeat invert_glu_rel1;
apply_equiv_left;
destruct_all;
gen_presups.
Lemma glu_univ_elem_univ_lvl : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A,
{{ Γ ⊢ A ® P }} ->
{{ Γ ⊢ A : Type@i }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; trivial.
Qed.
Lemma glu_univ_elem_typ_resp_exp_eq : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A A',
{{ Γ ⊢ A ® P }} ->
{{ Γ ⊢ A ≈ A' : Type@i }} ->
{{ Γ ⊢ A' ® P }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; mauto 4.
split; [trivial |].
intros.
transitivity {{{ A[σ] }}}; mauto 4.
Qed.
Add Parametric Morphism i P El a (H : glu_univ_elem i P El a) Γ : (P Γ)
with signature wf_exp_eq Γ {{{ Type@i }}} ==> iff as glu_univ_elem_typ_morphism_iff1.
Proof.
split; intros; eapply glu_univ_elem_typ_resp_exp_eq; mauto 2.
Qed.
Lemma glu_univ_elem_trm_resp_typ_exp_eq : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ M A m A',
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ A ≈ A' : Type@i }} ->
{{ Γ ⊢ M : A' ® m ∈ El }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; repeat split; intros; mauto 3;
[firstorder | | transitivity {{{ A[σ] }}}; mauto 4 | assert {{ Δ ⊢ A[σ] ≈ A'[σ] : Type@i }}; mauto 3].
econstructor; mauto 3.
Qed.
Add Parametric Morphism i P El a (H : glu_univ_elem i P El a) Γ : (El Γ)
with signature wf_exp_eq Γ {{{Type@i}}} ==> eq ==> eq ==> iff as glu_univ_elem_trm_morphism_iff1.
Proof.
split; intros;
eapply glu_univ_elem_trm_resp_typ_exp_eq;
mauto 2.
Qed.
Lemma glu_univ_elem_typ_resp_ctx_eq : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A Δ,
{{ Γ ⊢ A ® P }} ->
{{ ⊢ Γ ≈ Δ }} ->
{{ Δ ⊢ A ® P }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; mauto 2;
econstructor; mauto 4.
Qed.
Add Parametric Morphism i P El a (H : glu_univ_elem i P El a) : P
with signature wf_ctx_eq ==> eq ==> iff as glu_univ_elem_typ_morphism_iff2.
Proof.
intros. split; intros;
eapply glu_univ_elem_typ_resp_ctx_eq;
mauto 2.
Qed.
Lemma glu_univ_elem_trm_resp_ctx_eq : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A M m Δ,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ ⊢ Γ ≈ Δ }} ->
{{ Δ ⊢ M : A ® m ∈ El }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; mauto 2;
econstructor; mauto 4 using glu_nat_resp_ctx_eq.
- split; mauto.
do 2 eexists.
split; mauto.
eapply glu_univ_elem_typ_resp_ctx_eq; mauto.
- split; mauto 4.
Qed.
Add Parametric Morphism i P El a (H : glu_univ_elem i P El a) : El
with signature wf_ctx_eq ==> eq ==> eq ==> eq ==> iff as glu_univ_elem_trm_morphism_iff2.
Proof.
intros. split; intros;
eapply glu_univ_elem_trm_resp_ctx_eq;
mauto 2.
Qed.
Lemma glu_nat_resp_wk' : forall Γ M a,
glu_nat Γ M a ->
forall Δ σ,
{{ Γ ⊢ M : ℕ }} ->
{{ Δ ⊢w σ : Γ }} ->
glu_nat Δ {{{ M[σ] }}} a.
Proof.
induction 1; intros; gen_presups.
- econstructor.
transitivity {{{ zero[σ] }}}; mauto.
- econstructor; [ |mauto].
transitivity {{{ (succ M')[σ] }}}; mauto 4.
- econstructor; trivial.
intros Δ' τ M' **.
gen_presups.
assert {{ Δ' ⊢w σ∘τ : Γ }} by mauto.
assert {{ Δ' ⊢ M[σ∘τ] ≈ M' : ℕ }} by mauto 4.
transitivity {{{ M[σ∘τ] }}}; mauto 4.
Qed.
Lemma glu_nat_resp_wk : forall Γ M a,
glu_nat Γ M a ->
forall Δ σ,
{{ Δ ⊢w σ : Γ }} ->
glu_nat Δ {{{ M[σ] }}} a.
Proof.
mauto using glu_nat_resp_wk'.
Qed.
#[export]
Hint Resolve glu_nat_resp_wk : mctt.
Lemma glu_univ_elem_trm_escape : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ M A m,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ M : A }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; mauto 4.
Qed.
Lemma glu_univ_elem_per_univ : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ Dom a ≈ a ∈ per_univ i }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros; eexists;
try solve [per_univ_elem_econstructor; try reflexivity; trivial].
- subst. eapply per_univ_elem_core_univ'; trivial.
reflexivity.
- match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
mauto.
Qed.
#[export]
Hint Resolve glu_univ_elem_per_univ : mctt.
Lemma glu_univ_elem_per_elem : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ M A m R,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ DF a ≈ a ∈ per_univ_elem i ↘ R }} ->
{{ Dom m ≈ m ∈ R }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H);
simpl_glu_rel;
try fold (per_univ j m m);
mauto 4.
intros.
destruct_rel_mod_app.
destruct_rel_mod_eval.
functional_eval_rewrite_clear.
do_per_univ_elem_irrel_assert.
econstructor; firstorder eauto.
Qed.
Lemma glu_univ_elem_trm_typ : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ M A m,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ A ® P }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel;
mauto 4.
econstructor; eauto.
match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
intros ? ? N n ? ? equiv_n.
destruct_rel_mod_eval.
enough (exists mn : domain, {{ $| m & n |↘ mn }} /\ {{ Δ ⊢ M[σ] N : OT[σ,,N] ® mn ∈ OEl n equiv_n }}) as [? []]; eauto 3.
Qed.
Lemma glu_univ_elem_trm_univ_lvl : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ M A m,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ A : Type@i }}.
Proof.
intros. eapply glu_univ_elem_univ_lvl; [| eapply glu_univ_elem_trm_typ]; eassumption.
Qed.
Lemma glu_univ_elem_trm_resp_exp_eq : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A M m M',
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ M ≈ M' : A }} ->
{{ Γ ⊢ M' : A ® m ∈ El }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel;
repeat split; mauto 3.
- repeat eexists; try split; eauto.
eapply glu_univ_elem_typ_resp_exp_eq; mauto.
- econstructor; eauto.
match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
intros.
destruct_rel_mod_eval.
assert {{ Δ ⊢ N : IT[σ]}} by eauto using glu_univ_elem_trm_escape.
assert (exists mn : domain, {{ $| m & n |↘ mn }} /\ {{ Δ ⊢ M[σ] N : OT[σ,,N] ® mn ∈ OEl n equiv_n }}) as [? []] by intuition.
eexists; split; eauto.
enough {{ Δ ⊢ M[σ] N ≈ M'[σ] N : OT[σ,,N] }} by eauto.
assert {{ Γ ⊢ M ≈ M' : Π IT OT }} as Hty by mauto.
eassert {{ Δ ⊢ IT[σ] : Type@_ }} by mauto 3.
eapply wf_exp_eq_sub_cong with (Γ := Δ) in Hty; [| eapply sub_eq_refl; mauto 3].
autorewrite with mctt in Hty.
eapply wf_exp_eq_app_cong with (N := N) (N' := N) in Hty; try pi_univ_level_tac; [|mauto 2].
autorewrite with mctt in Hty.
eassumption.
- intros.
enough {{ Δ ⊢ M[σ] ≈ M'[σ] : A[σ] }}; mauto 4.
Qed.
Add Parametric Morphism i P El a (H : glu_univ_elem i P El a) Γ T : (El Γ T)
with signature wf_exp_eq Γ T ==> eq ==> iff as glu_univ_elem_trm_morphism_iff3.
Proof.
split; intros;
eapply glu_univ_elem_trm_resp_exp_eq;
mauto 2.
Qed.
Lemma glu_univ_elem_core_univ' : forall j i typ_rel el_rel,
j < i ->
(typ_rel <∙> univ_glu_typ_pred j i) ->
(el_rel <∙> univ_glu_exp_pred j i) ->
{{ DG 𝕌@j ∈ glu_univ_elem i ↘ typ_rel ↘ el_rel }}.
Proof.
intros.
unshelve basic_glu_univ_elem_econstructor; mautosolve.
Qed.
#[export]
Hint Resolve glu_univ_elem_core_univ' : mctt.
Ltac glu_univ_elem_econstructor :=
eapply glu_univ_elem_core_univ' + basic_glu_univ_elem_econstructor.
Lemma glu_univ_elem_univ_simple_constructor : forall {i},
glu_univ_elem (S i) (univ_glu_typ_pred i (S i)) (univ_glu_exp_pred i (S i)) d{{{ 𝕌@i }}}.
Proof.
intros.
glu_univ_elem_econstructor; mauto; reflexivity.
Qed.
#[export]
Hint Resolve glu_univ_elem_univ_simple_constructor : mctt.
Ltac rewrite_predicate_equivalence_left :=
repeat match goal with
| H : ?R1 <∙> ?R2 |- _ =>
try setoid_rewrite H;
(on_all_hyp: fun H' => assert_fails (unify H H'); unmark H; setoid_rewrite H in H');
let T := type of H in
fold (id T) in H
end; unfold id in *.
Ltac rewrite_predicate_equivalence_right :=
repeat match goal with
| H : ?R1 <∙> ?R2 |- _ =>
try setoid_rewrite <- H;
(on_all_hyp: fun H' => assert_fails (unify H H'); unmark H; setoid_rewrite <- H in H');
let T := type of H in
fold (id T) in H
end; unfold id in *.
Ltac clear_predicate_equivalence :=
repeat match goal with
| H : ?R1 <∙> ?R2 |- _ =>
(unify R1 R2; clear H) + (is_var R1; clear R1 H) + (is_var R2; clear R2 H)
end.
Ltac apply_predicate_equivalence :=
clear_predicate_equivalence;
rewrite_predicate_equivalence_right;
clear_predicate_equivalence;
rewrite_predicate_equivalence_left;
clear_predicate_equivalence.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Soundness.LogicalRelation Require Import CoreTactics Definitions.
From Mctt.Core.Soundness.Weakening Require Export Lemmas.
Import Domain_Notations.
Lemma glu_nat_per_nat : forall Γ M a,
glu_nat Γ M a ->
{{ Dom a ≈ a ∈ per_nat }}.
Proof.
induction 1; mauto.
Qed.
#[local]
Hint Resolve glu_nat_per_nat : mctt.
Lemma glu_nat_escape : forall Γ M a,
glu_nat Γ M a ->
{{ ⊢ Γ }} ->
{{ Γ ⊢ M : ℕ }}.
Proof.
induction 1; intros;
try match goal with
| H : _ |- _ => solve [gen_presup H; mauto]
end.
assert {{ Γ ⊢w Id : Γ }} by mauto.
match_by_head (per_bot m m) ltac:(fun H => specialize (H (length Γ)) as [M' []]).
clear_dups.
assert {{ Γ ⊢ M[Id] ≈ M' : ℕ }} by mauto.
gen_presups.
mauto.
Qed.
#[export]
Hint Resolve glu_nat_escape : mctt.
Lemma glu_nat_resp_ctx_eq : forall Γ M a Δ,
glu_nat Γ M a ->
{{ ⊢ Γ ≈ Δ }} ->
glu_nat Δ M a.
Proof.
induction 1; intros; mauto.
Qed.
#[local]
Hint Resolve glu_nat_resp_ctx_eq : mctt.
Add Parametric Morphism : glu_nat
with signature wf_ctx_eq ==> eq ==> eq ==> iff as glu_ctx_env_sub_morphism_iff1.
Proof.
split; mauto using glu_nat_resp_ctx_eq.
Qed.
Lemma glu_nat_resp_exp_eq : forall Γ M a,
glu_nat Γ M a ->
forall M',
{{ Γ ⊢ M ≈ M' : ℕ }} ->
glu_nat Γ M' a.
Proof.
induction 1; intros; mauto 4.
econstructor; trivial.
intros.
transitivity {{{ M[σ] }}}; mauto.
Qed.
#[local]
Hint Resolve glu_nat_resp_exp_eq : mctt.
Add Parametric Morphism Γ : (glu_nat Γ)
with signature wf_exp_eq Γ {{{ ℕ }}} ==> eq ==> iff as glu_ctx_env_sub_morphism_iff2.
Proof.
split; mauto using glu_nat_resp_exp_eq.
Qed.
Lemma glu_nat_readback : forall Γ M a,
glu_nat Γ M a ->
forall Δ σ M',
{{ Δ ⊢w σ : Γ }} ->
{{ Rnf ⇓ ℕ a in length Δ ↘ M' }} ->
{{ Δ ⊢ M[σ] ≈ M' : ℕ }}.
Proof.
induction 1; intros; progressive_inversion; gen_presups.
- transitivity {{{ zero[σ] }}}; mauto 4.
- assert {{ Δ ⊢ M'[σ] ≈ M0 : ℕ }} by mauto 4.
transitivity {{{ (succ M')[σ] }}}; mauto 3.
transitivity {{{ succ M'[σ] }}}; mauto 4.
- mauto 4.
Qed.
#[global]
Ltac simpl_glu_rel :=
apply_equiv_left;
repeat invert_glu_rel1;
apply_equiv_left;
destruct_all;
gen_presups.
Lemma glu_univ_elem_univ_lvl : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A,
{{ Γ ⊢ A ® P }} ->
{{ Γ ⊢ A : Type@i }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; trivial.
Qed.
Lemma glu_univ_elem_typ_resp_exp_eq : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A A',
{{ Γ ⊢ A ® P }} ->
{{ Γ ⊢ A ≈ A' : Type@i }} ->
{{ Γ ⊢ A' ® P }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; mauto 4.
split; [trivial |].
intros.
transitivity {{{ A[σ] }}}; mauto 4.
Qed.
Add Parametric Morphism i P El a (H : glu_univ_elem i P El a) Γ : (P Γ)
with signature wf_exp_eq Γ {{{ Type@i }}} ==> iff as glu_univ_elem_typ_morphism_iff1.
Proof.
split; intros; eapply glu_univ_elem_typ_resp_exp_eq; mauto 2.
Qed.
Lemma glu_univ_elem_trm_resp_typ_exp_eq : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ M A m A',
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ A ≈ A' : Type@i }} ->
{{ Γ ⊢ M : A' ® m ∈ El }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; repeat split; intros; mauto 3;
[firstorder | | transitivity {{{ A[σ] }}}; mauto 4 | assert {{ Δ ⊢ A[σ] ≈ A'[σ] : Type@i }}; mauto 3].
econstructor; mauto 3.
Qed.
Add Parametric Morphism i P El a (H : glu_univ_elem i P El a) Γ : (El Γ)
with signature wf_exp_eq Γ {{{Type@i}}} ==> eq ==> eq ==> iff as glu_univ_elem_trm_morphism_iff1.
Proof.
split; intros;
eapply glu_univ_elem_trm_resp_typ_exp_eq;
mauto 2.
Qed.
Lemma glu_univ_elem_typ_resp_ctx_eq : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A Δ,
{{ Γ ⊢ A ® P }} ->
{{ ⊢ Γ ≈ Δ }} ->
{{ Δ ⊢ A ® P }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; mauto 2;
econstructor; mauto 4.
Qed.
Add Parametric Morphism i P El a (H : glu_univ_elem i P El a) : P
with signature wf_ctx_eq ==> eq ==> iff as glu_univ_elem_typ_morphism_iff2.
Proof.
intros. split; intros;
eapply glu_univ_elem_typ_resp_ctx_eq;
mauto 2.
Qed.
Lemma glu_univ_elem_trm_resp_ctx_eq : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A M m Δ,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ ⊢ Γ ≈ Δ }} ->
{{ Δ ⊢ M : A ® m ∈ El }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; mauto 2;
econstructor; mauto 4 using glu_nat_resp_ctx_eq.
- split; mauto.
do 2 eexists.
split; mauto.
eapply glu_univ_elem_typ_resp_ctx_eq; mauto.
- split; mauto 4.
Qed.
Add Parametric Morphism i P El a (H : glu_univ_elem i P El a) : El
with signature wf_ctx_eq ==> eq ==> eq ==> eq ==> iff as glu_univ_elem_trm_morphism_iff2.
Proof.
intros. split; intros;
eapply glu_univ_elem_trm_resp_ctx_eq;
mauto 2.
Qed.
Lemma glu_nat_resp_wk' : forall Γ M a,
glu_nat Γ M a ->
forall Δ σ,
{{ Γ ⊢ M : ℕ }} ->
{{ Δ ⊢w σ : Γ }} ->
glu_nat Δ {{{ M[σ] }}} a.
Proof.
induction 1; intros; gen_presups.
- econstructor.
transitivity {{{ zero[σ] }}}; mauto.
- econstructor; [ |mauto].
transitivity {{{ (succ M')[σ] }}}; mauto 4.
- econstructor; trivial.
intros Δ' τ M' **.
gen_presups.
assert {{ Δ' ⊢w σ∘τ : Γ }} by mauto.
assert {{ Δ' ⊢ M[σ∘τ] ≈ M' : ℕ }} by mauto 4.
transitivity {{{ M[σ∘τ] }}}; mauto 4.
Qed.
Lemma glu_nat_resp_wk : forall Γ M a,
glu_nat Γ M a ->
forall Δ σ,
{{ Δ ⊢w σ : Γ }} ->
glu_nat Δ {{{ M[σ] }}} a.
Proof.
mauto using glu_nat_resp_wk'.
Qed.
#[export]
Hint Resolve glu_nat_resp_wk : mctt.
Lemma glu_univ_elem_trm_escape : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ M A m,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ M : A }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel; mauto 4.
Qed.
Lemma glu_univ_elem_per_univ : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ Dom a ≈ a ∈ per_univ i }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros; eexists;
try solve [per_univ_elem_econstructor; try reflexivity; trivial].
- subst. eapply per_univ_elem_core_univ'; trivial.
reflexivity.
- match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
mauto.
Qed.
#[export]
Hint Resolve glu_univ_elem_per_univ : mctt.
Lemma glu_univ_elem_per_elem : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ M A m R,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ DF a ≈ a ∈ per_univ_elem i ↘ R }} ->
{{ Dom m ≈ m ∈ R }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H);
simpl_glu_rel;
try fold (per_univ j m m);
mauto 4.
intros.
destruct_rel_mod_app.
destruct_rel_mod_eval.
functional_eval_rewrite_clear.
do_per_univ_elem_irrel_assert.
econstructor; firstorder eauto.
Qed.
Lemma glu_univ_elem_trm_typ : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ M A m,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ A ® P }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel;
mauto 4.
econstructor; eauto.
match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
intros ? ? N n ? ? equiv_n.
destruct_rel_mod_eval.
enough (exists mn : domain, {{ $| m & n |↘ mn }} /\ {{ Δ ⊢ M[σ] N : OT[σ,,N] ® mn ∈ OEl n equiv_n }}) as [? []]; eauto 3.
Qed.
Lemma glu_univ_elem_trm_univ_lvl : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ M A m,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ A : Type@i }}.
Proof.
intros. eapply glu_univ_elem_univ_lvl; [| eapply glu_univ_elem_trm_typ]; eassumption.
Qed.
Lemma glu_univ_elem_trm_resp_exp_eq : forall i P El a,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A M m M',
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ M ≈ M' : A }} ->
{{ Γ ⊢ M' : A ® m ∈ El }}.
Proof.
simpl.
induction 1 using glu_univ_elem_ind; intros;
simpl_glu_rel;
repeat split; mauto 3.
- repeat eexists; try split; eauto.
eapply glu_univ_elem_typ_resp_exp_eq; mauto.
- econstructor; eauto.
match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
intros.
destruct_rel_mod_eval.
assert {{ Δ ⊢ N : IT[σ]}} by eauto using glu_univ_elem_trm_escape.
assert (exists mn : domain, {{ $| m & n |↘ mn }} /\ {{ Δ ⊢ M[σ] N : OT[σ,,N] ® mn ∈ OEl n equiv_n }}) as [? []] by intuition.
eexists; split; eauto.
enough {{ Δ ⊢ M[σ] N ≈ M'[σ] N : OT[σ,,N] }} by eauto.
assert {{ Γ ⊢ M ≈ M' : Π IT OT }} as Hty by mauto.
eassert {{ Δ ⊢ IT[σ] : Type@_ }} by mauto 3.
eapply wf_exp_eq_sub_cong with (Γ := Δ) in Hty; [| eapply sub_eq_refl; mauto 3].
autorewrite with mctt in Hty.
eapply wf_exp_eq_app_cong with (N := N) (N' := N) in Hty; try pi_univ_level_tac; [|mauto 2].
autorewrite with mctt in Hty.
eassumption.
- intros.
enough {{ Δ ⊢ M[σ] ≈ M'[σ] : A[σ] }}; mauto 4.
Qed.
Add Parametric Morphism i P El a (H : glu_univ_elem i P El a) Γ T : (El Γ T)
with signature wf_exp_eq Γ T ==> eq ==> iff as glu_univ_elem_trm_morphism_iff3.
Proof.
split; intros;
eapply glu_univ_elem_trm_resp_exp_eq;
mauto 2.
Qed.
Lemma glu_univ_elem_core_univ' : forall j i typ_rel el_rel,
j < i ->
(typ_rel <∙> univ_glu_typ_pred j i) ->
(el_rel <∙> univ_glu_exp_pred j i) ->
{{ DG 𝕌@j ∈ glu_univ_elem i ↘ typ_rel ↘ el_rel }}.
Proof.
intros.
unshelve basic_glu_univ_elem_econstructor; mautosolve.
Qed.
#[export]
Hint Resolve glu_univ_elem_core_univ' : mctt.
Ltac glu_univ_elem_econstructor :=
eapply glu_univ_elem_core_univ' + basic_glu_univ_elem_econstructor.
Lemma glu_univ_elem_univ_simple_constructor : forall {i},
glu_univ_elem (S i) (univ_glu_typ_pred i (S i)) (univ_glu_exp_pred i (S i)) d{{{ 𝕌@i }}}.
Proof.
intros.
glu_univ_elem_econstructor; mauto; reflexivity.
Qed.
#[export]
Hint Resolve glu_univ_elem_univ_simple_constructor : mctt.
Ltac rewrite_predicate_equivalence_left :=
repeat match goal with
| H : ?R1 <∙> ?R2 |- _ =>
try setoid_rewrite H;
(on_all_hyp: fun H' => assert_fails (unify H H'); unmark H; setoid_rewrite H in H');
let T := type of H in
fold (id T) in H
end; unfold id in *.
Ltac rewrite_predicate_equivalence_right :=
repeat match goal with
| H : ?R1 <∙> ?R2 |- _ =>
try setoid_rewrite <- H;
(on_all_hyp: fun H' => assert_fails (unify H H'); unmark H; setoid_rewrite <- H in H');
let T := type of H in
fold (id T) in H
end; unfold id in *.
Ltac clear_predicate_equivalence :=
repeat match goal with
| H : ?R1 <∙> ?R2 |- _ =>
(unify R1 R2; clear H) + (is_var R1; clear R1 H) + (is_var R2; clear R2 H)
end.
Ltac apply_predicate_equivalence :=
clear_predicate_equivalence;
rewrite_predicate_equivalence_right;
clear_predicate_equivalence;
rewrite_predicate_equivalence_left;
clear_predicate_equivalence.
Simple Morphism instance for glu_univ_elem
Add Parametric Morphism i : (glu_univ_elem i)
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> eq ==> iff as simple_glu_univ_elem_morphism_iff.
Proof with mautosolve.
intros P P' ? El El'.
split; intro Horig; [gen El' P' | gen El P];
induction Horig using glu_univ_elem_ind; unshelve glu_univ_elem_econstructor;
try (etransitivity; [symmetry + idtac|]; eassumption); eauto.
Qed.
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> eq ==> iff as simple_glu_univ_elem_morphism_iff.
Proof with mautosolve.
intros P P' ? El El'.
split; intro Horig; [gen El' P' | gen El P];
induction Horig using glu_univ_elem_ind; unshelve glu_univ_elem_econstructor;
try (etransitivity; [symmetry + idtac|]; eassumption); eauto.
Qed.
Add Parametric Morphism i : (neut_glu_typ_pred i)
with signature per_bot ==> eq ==> eq ==> iff as neut_glu_typ_pred_morphism_iff.
Proof with mautosolve.
split; intros []; econstructor; intuition;
match_by_head per_bot ltac:(fun H => specialize (H (length Δ)) as [? []]);
functional_read_rewrite_clear; intuition.
Qed.
Add Parametric Morphism i : (neut_glu_typ_pred i)
with signature per_bot ==> glu_typ_pred_equivalence as neut_glu_typ_pred_morphism_glu_typ_pred_equivalence.
Proof with mautosolve.
split; apply neut_glu_typ_pred_morphism_iff; mauto.
Qed.
Add Parametric Morphism i : (neut_glu_exp_pred i)
with signature per_bot ==> eq ==> eq ==> eq ==> eq ==> iff as neut_glu_exp_pred_morphism_iff.
Proof with mautosolve.
split; intros []; econstructor; intuition;
match_by_head per_bot ltac:(fun H => specialize (H (length Δ)) as [? []]);
functional_read_rewrite_clear; intuition;
match_by_head per_bot ltac:(fun H => rewrite H in *); eassumption.
Qed.
Add Parametric Morphism i : (neut_glu_exp_pred i)
with signature per_bot ==> glu_exp_pred_equivalence as neut_glu_exp_pred_morphism_glu_exp_pred_equivalence.
Proof with mautosolve.
split; apply neut_glu_exp_pred_morphism_iff; mauto.
Qed.
with signature per_bot ==> eq ==> eq ==> iff as neut_glu_typ_pred_morphism_iff.
Proof with mautosolve.
split; intros []; econstructor; intuition;
match_by_head per_bot ltac:(fun H => specialize (H (length Δ)) as [? []]);
functional_read_rewrite_clear; intuition.
Qed.
Add Parametric Morphism i : (neut_glu_typ_pred i)
with signature per_bot ==> glu_typ_pred_equivalence as neut_glu_typ_pred_morphism_glu_typ_pred_equivalence.
Proof with mautosolve.
split; apply neut_glu_typ_pred_morphism_iff; mauto.
Qed.
Add Parametric Morphism i : (neut_glu_exp_pred i)
with signature per_bot ==> eq ==> eq ==> eq ==> eq ==> iff as neut_glu_exp_pred_morphism_iff.
Proof with mautosolve.
split; intros []; econstructor; intuition;
match_by_head per_bot ltac:(fun H => specialize (H (length Δ)) as [? []]);
functional_read_rewrite_clear; intuition;
match_by_head per_bot ltac:(fun H => rewrite H in *); eassumption.
Qed.
Add Parametric Morphism i : (neut_glu_exp_pred i)
with signature per_bot ==> glu_exp_pred_equivalence as neut_glu_exp_pred_morphism_glu_exp_pred_equivalence.
Proof with mautosolve.
split; apply neut_glu_exp_pred_morphism_iff; mauto.
Qed.
Add Parametric Morphism i IR : (pi_glu_typ_pred i IR)
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> eq ==> eq ==> eq ==> iff as pi_glu_typ_pred_morphism_iff.
Proof with mautosolve.
split; intros []; econstructor; intuition.
Qed.
Add Parametric Morphism i IR : (pi_glu_typ_pred i IR)
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> eq ==> glu_typ_pred_equivalence as pi_glu_typ_pred_morphism_glu_typ_pred_equivalence.
Proof with mautosolve.
split; intros []; econstructor; intuition.
Qed.
Add Parametric Morphism i IR : (pi_glu_exp_pred i IR)
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> relation_equivalence ==> eq ==> eq ==> eq ==> eq ==> eq ==> iff as pi_glu_exp_pred_morphism_iff.
Proof with mautosolve.
split; intros []; econstructor; intuition.
Qed.
Add Parametric Morphism i IR : (pi_glu_exp_pred i IR)
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> relation_equivalence ==> eq ==> glu_exp_pred_equivalence as pi_glu_exp_pred_morphism_glu_exp_pred_equivalence.
Proof with mautosolve.
split; intros []; econstructor; intuition.
Qed.
Lemma functional_glu_univ_elem : forall i a P P' El El',
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ DG a ∈ glu_univ_elem i ↘ P' ↘ El' }} ->
(P <∙> P') /\ (El <∙> El').
Proof.
simpl.
intros * Ha Ha'. gen P' El'.
induction Ha using glu_univ_elem_ind; intros; basic_invert_glu_univ_elem Ha';
apply_predicate_equivalence; try solve [split; reflexivity].
assert ((IP <∙> IP0) /\ (IEl <∙> IEl0)) as [] by mauto.
apply_predicate_equivalence.
handle_per_univ_elem_irrel.
(on_all_hyp: fun H => directed invert_per_univ_elem H).
handle_per_univ_elem_irrel.
split; [intros Γ C | intros Γ M C m].
- split; intros []; econstructor; intuition;
[rename equiv_m into equiv0_m; assert (equiv_m : in_rel m m) by intuition
| assert (equiv0_m : in_rel0 m m) by intuition ];
destruct_rel_mod_eval;
functional_eval_rewrite_clear;
assert ((OP m equiv_m <∙> OP0 m equiv0_m) /\ (OEl m equiv_m <∙> OEl0 m equiv0_m)) as [] by mauto 3;
intuition.
- split; intros []; econstructor; intuition;
[rename equiv_n into equiv0_n; assert (equiv_n : in_rel n n) by intuition
| assert (equiv0_n : in_rel0 n n) by intuition];
destruct_rel_mod_eval;
[assert (exists m0n, {{ $| m0 & n |↘ m0n }} /\ {{ Δ ⊢ M0[σ] N : OT[σ,,N] ® m0n ∈ OEl n equiv_n }}) by intuition
| assert (exists m0n, {{ $| m0 & n |↘ m0n }} /\ {{ Δ ⊢ M0[σ] N : OT[σ,,N] ® m0n ∈ OEl0 n equiv0_n }}) by intuition];
destruct_conjs;
assert ((OP n equiv_n <∙> OP0 n equiv0_n) /\ (OEl n equiv_n <∙> OEl0 n equiv0_n)) as [] by mauto 3;
eexists; split; intuition.
Qed.
Ltac apply_functional_glu_univ_elem1 :=
let tactic_error o1 o2 := fail 2 "functional_glu_univ_elem biconditional between" o1 "and" o2 "cannot be solved" in
match goal with
| H1 : {{ DG ^?a ∈ glu_univ_elem ?i ↘ ?P1 ↘ ?El1 }},
H2 : {{ DG ^?a ∈ glu_univ_elem ?i' ↘ ?P2 ↘ ?El2 }} |- _ =>
unify i i';
assert_fails (unify P1 P2; unify El1 El2);
match goal with
| H : P1 <∙> P2, H0 : El1 <∙> El2 |- _ => fail 1
| H : P1 <∙> P2, H0 : El2 <∙> El1 |- _ => fail 1
| H : P2 <∙> P1, H0 : El1 <∙> El2 |- _ => fail 1
| H : P2 <∙> P1, H0 : El2 <∙> El1 |- _ => fail 1
| _ => assert ((P1 <∙> P2) /\ (El1 <∙> El2)) as [] by (eapply functional_glu_univ_elem; [apply H1 | apply H2]) || tactic_error P1 P2
end
end.
Ltac apply_functional_glu_univ_elem :=
repeat apply_functional_glu_univ_elem1.
Ltac handle_functional_glu_univ_elem :=
functional_eval_rewrite_clear;
fold glu_typ_pred in *;
fold glu_exp_pred in *;
apply_functional_glu_univ_elem;
apply_predicate_equivalence;
clear_dups.
Lemma glu_univ_elem_pi_clean_inversion1 : forall {i a ρ B in_rel P El},
{{ DF a ≈ a ∈ per_univ_elem i ↘ in_rel }} ->
{{ DG Π a ρ B ∈ glu_univ_elem i ↘ P ↘ El }} ->
exists IP IEl (OP : forall c (equiv_c_c : {{ Dom c ≈ c ∈ in_rel }}), glu_typ_pred)
(OEl : forall c (equiv_c_c : {{ Dom c ≈ c ∈ in_rel }}), glu_exp_pred) elem_rel,
{{ DG a ∈ glu_univ_elem i ↘ IP ↘ IEl }} /\
(forall c (equiv_c : {{ Dom c ≈ c ∈ in_rel }}) b,
{{ ⟦ B ⟧ ρ ↦ c ↘ b }} ->
{{ DG b ∈ glu_univ_elem i ↘ OP _ equiv_c ↘ OEl _ equiv_c }}) /\
{{ DF Π a ρ B ≈ Π a ρ B ∈ per_univ_elem i ↘ elem_rel }} /\
(P <∙> pi_glu_typ_pred i in_rel IP IEl OP) /\
(El <∙> pi_glu_exp_pred i in_rel IP IEl elem_rel OEl).
Proof.
intros *.
simpl.
intros Hinper Hglu.
basic_invert_glu_univ_elem Hglu.
handle_functional_glu_univ_elem.
handle_per_univ_elem_irrel.
do 5 eexists.
repeat split.
1,3: eassumption.
1: instantiate (1 := fun c equiv_c Γ A M m => forall (b : domain) Pb Elb,
{{ ⟦ B ⟧ ρ ↦ c ↘ b }} ->
{{ DG b ∈ glu_univ_elem i ↘ Pb ↘ Elb }} ->
{{ Γ ⊢ M : A ® m ∈ Elb }}).
1: instantiate (1 := fun c equiv_c Γ A => forall (b : domain) Pb Elb,
{{ ⟦ B ⟧ ρ ↦ c ↘ b }} ->
{{ DG b ∈ glu_univ_elem i ↘ Pb ↘ Elb }} ->
{{ Γ ⊢ A ® Pb }}).
2-5: intros []; econstructor; mauto.
all: intros.
- assert {{ Dom c ≈ c ∈ in_rel0 }} as equiv0_c by intuition.
assert {{ DG b ∈ glu_univ_elem i ↘ OP c equiv0_c ↘ OEl c equiv0_c }} by mauto 3.
apply -> simple_glu_univ_elem_morphism_iff; [| reflexivity | |]; [eauto | |].
+ intros ? ? ? ?.
split; intros; handle_functional_glu_univ_elem; intuition.
+ intros ? ?.
split; [intros; handle_functional_glu_univ_elem |]; intuition.
- assert {{ Dom m ≈ m ∈ in_rel0 }} as equiv0_m by intuition.
assert {{ DG b ∈ glu_univ_elem i ↘ OP m equiv0_m ↘ OEl m equiv0_m }} by mauto 3.
handle_functional_glu_univ_elem.
intuition.
- match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
destruct_rel_mod_eval.
intuition.
- assert {{ Dom n ≈ n ∈ in_rel0 }} as equiv0_n by intuition.
assert (exists mn : domain, {{ $| m & n |↘ mn }} /\ {{ Δ ⊢ M[σ] N : OT[σ,,N] ® mn ∈ OEl n equiv0_n }}) by mauto 3.
destruct_conjs.
eexists.
intuition.
assert {{ DG b ∈ glu_univ_elem i ↘ OP n equiv0_n ↘ OEl n equiv0_n }} by mauto 3.
handle_functional_glu_univ_elem.
intuition.
- assert (exists mn : domain,
{{ $| m & n |↘ mn }} /\
(forall (b : domain) (Pb : glu_typ_pred) (Elb : glu_exp_pred),
{{ ⟦ B ⟧ ρ ↦ n ↘ b }} ->
{{ DG b ∈ glu_univ_elem i ↘ Pb ↘ Elb }} ->
{{ Δ ⊢ M[σ] N : OT[σ,,N] ® mn ∈ Elb }})) by intuition.
destruct_conjs.
match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
handle_per_univ_elem_irrel.
destruct_rel_mod_eval.
destruct_rel_mod_app.
functional_eval_rewrite_clear.
eexists.
intuition.
Qed.
Lemma glu_univ_elem_pi_clean_inversion2 : forall {i a ρ B in_rel IP IEl P El},
{{ DF a ≈ a ∈ per_univ_elem i ↘ in_rel }} ->
{{ DG a ∈ glu_univ_elem i ↘ IP ↘ IEl }} ->
{{ DG Π a ρ B ∈ glu_univ_elem i ↘ P ↘ El }} ->
exists (OP : forall c (equiv_c_c : {{ Dom c ≈ c ∈ in_rel }}), glu_typ_pred)
(OEl : forall c (equiv_c_c : {{ Dom c ≈ c ∈ in_rel }}), glu_exp_pred) elem_rel,
(forall c (equiv_c : {{ Dom c ≈ c ∈ in_rel }}) b,
{{ ⟦ B ⟧ ρ ↦ c ↘ b }} ->
{{ DG b ∈ glu_univ_elem i ↘ OP _ equiv_c ↘ OEl _ equiv_c }}) /\
{{ DF Π a ρ B ≈ Π a ρ B ∈ per_univ_elem i ↘ elem_rel }} /\
(P <∙> pi_glu_typ_pred i in_rel IP IEl OP) /\
(El <∙> pi_glu_exp_pred i in_rel IP IEl elem_rel OEl).
Proof.
intros *.
simpl.
intros Hinper Hinglu Hglu.
unshelve eapply (glu_univ_elem_pi_clean_inversion1 _) in Hglu; shelve_unifiable; [eassumption |];
destruct Hglu as [? [? [? [? [? [? [? [? []]]]]]]]].
handle_functional_glu_univ_elem.
do 3 eexists.
repeat split; try eassumption;
intros []; econstructor; mauto.
Qed.
Ltac invert_glu_univ_elem H :=
(unshelve eapply (glu_univ_elem_pi_clean_inversion2 _ _) in H; shelve_unifiable; [eassumption | eassumption |];
destruct H as [? [? [? [? [? []]]]]])
+ (unshelve eapply (glu_univ_elem_pi_clean_inversion1 _) in H; shelve_unifiable; [eassumption |];
destruct H as [? [? [? [? [? [? [? [? []]]]]]]]])
+ basic_invert_glu_univ_elem H.
Lemma glu_univ_elem_resp_per_univ : forall i a a' P El,
{{ Dom a ≈ a' ∈ per_univ i }} ->
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ DG a' ∈ glu_univ_elem i ↘ P ↘ El }}.
Proof.
simpl.
intros * [elem_rel Hper] Horig.
pose proof Hper.
gen P El.
induction Hper using per_univ_elem_ind; intros; subst;
saturate_refl_for per_univ_elem;
invert_glu_univ_elem Horig; glu_univ_elem_econstructor; try eassumption; mauto;
handle_per_univ_elem_irrel;
handle_functional_glu_univ_elem.
- intros.
match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
destruct_rel_mod_eval.
handle_per_univ_elem_irrel.
intuition.
- reflexivity.
- apply neut_glu_typ_pred_morphism_glu_typ_pred_equivalence.
eassumption.
- apply neut_glu_exp_pred_morphism_glu_exp_pred_equivalence.
eassumption.
Qed.
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> eq ==> eq ==> eq ==> iff as pi_glu_typ_pred_morphism_iff.
Proof with mautosolve.
split; intros []; econstructor; intuition.
Qed.
Add Parametric Morphism i IR : (pi_glu_typ_pred i IR)
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> eq ==> glu_typ_pred_equivalence as pi_glu_typ_pred_morphism_glu_typ_pred_equivalence.
Proof with mautosolve.
split; intros []; econstructor; intuition.
Qed.
Add Parametric Morphism i IR : (pi_glu_exp_pred i IR)
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> relation_equivalence ==> eq ==> eq ==> eq ==> eq ==> eq ==> iff as pi_glu_exp_pred_morphism_iff.
Proof with mautosolve.
split; intros []; econstructor; intuition.
Qed.
Add Parametric Morphism i IR : (pi_glu_exp_pred i IR)
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> relation_equivalence ==> eq ==> glu_exp_pred_equivalence as pi_glu_exp_pred_morphism_glu_exp_pred_equivalence.
Proof with mautosolve.
split; intros []; econstructor; intuition.
Qed.
Lemma functional_glu_univ_elem : forall i a P P' El El',
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ DG a ∈ glu_univ_elem i ↘ P' ↘ El' }} ->
(P <∙> P') /\ (El <∙> El').
Proof.
simpl.
intros * Ha Ha'. gen P' El'.
induction Ha using glu_univ_elem_ind; intros; basic_invert_glu_univ_elem Ha';
apply_predicate_equivalence; try solve [split; reflexivity].
assert ((IP <∙> IP0) /\ (IEl <∙> IEl0)) as [] by mauto.
apply_predicate_equivalence.
handle_per_univ_elem_irrel.
(on_all_hyp: fun H => directed invert_per_univ_elem H).
handle_per_univ_elem_irrel.
split; [intros Γ C | intros Γ M C m].
- split; intros []; econstructor; intuition;
[rename equiv_m into equiv0_m; assert (equiv_m : in_rel m m) by intuition
| assert (equiv0_m : in_rel0 m m) by intuition ];
destruct_rel_mod_eval;
functional_eval_rewrite_clear;
assert ((OP m equiv_m <∙> OP0 m equiv0_m) /\ (OEl m equiv_m <∙> OEl0 m equiv0_m)) as [] by mauto 3;
intuition.
- split; intros []; econstructor; intuition;
[rename equiv_n into equiv0_n; assert (equiv_n : in_rel n n) by intuition
| assert (equiv0_n : in_rel0 n n) by intuition];
destruct_rel_mod_eval;
[assert (exists m0n, {{ $| m0 & n |↘ m0n }} /\ {{ Δ ⊢ M0[σ] N : OT[σ,,N] ® m0n ∈ OEl n equiv_n }}) by intuition
| assert (exists m0n, {{ $| m0 & n |↘ m0n }} /\ {{ Δ ⊢ M0[σ] N : OT[σ,,N] ® m0n ∈ OEl0 n equiv0_n }}) by intuition];
destruct_conjs;
assert ((OP n equiv_n <∙> OP0 n equiv0_n) /\ (OEl n equiv_n <∙> OEl0 n equiv0_n)) as [] by mauto 3;
eexists; split; intuition.
Qed.
Ltac apply_functional_glu_univ_elem1 :=
let tactic_error o1 o2 := fail 2 "functional_glu_univ_elem biconditional between" o1 "and" o2 "cannot be solved" in
match goal with
| H1 : {{ DG ^?a ∈ glu_univ_elem ?i ↘ ?P1 ↘ ?El1 }},
H2 : {{ DG ^?a ∈ glu_univ_elem ?i' ↘ ?P2 ↘ ?El2 }} |- _ =>
unify i i';
assert_fails (unify P1 P2; unify El1 El2);
match goal with
| H : P1 <∙> P2, H0 : El1 <∙> El2 |- _ => fail 1
| H : P1 <∙> P2, H0 : El2 <∙> El1 |- _ => fail 1
| H : P2 <∙> P1, H0 : El1 <∙> El2 |- _ => fail 1
| H : P2 <∙> P1, H0 : El2 <∙> El1 |- _ => fail 1
| _ => assert ((P1 <∙> P2) /\ (El1 <∙> El2)) as [] by (eapply functional_glu_univ_elem; [apply H1 | apply H2]) || tactic_error P1 P2
end
end.
Ltac apply_functional_glu_univ_elem :=
repeat apply_functional_glu_univ_elem1.
Ltac handle_functional_glu_univ_elem :=
functional_eval_rewrite_clear;
fold glu_typ_pred in *;
fold glu_exp_pred in *;
apply_functional_glu_univ_elem;
apply_predicate_equivalence;
clear_dups.
Lemma glu_univ_elem_pi_clean_inversion1 : forall {i a ρ B in_rel P El},
{{ DF a ≈ a ∈ per_univ_elem i ↘ in_rel }} ->
{{ DG Π a ρ B ∈ glu_univ_elem i ↘ P ↘ El }} ->
exists IP IEl (OP : forall c (equiv_c_c : {{ Dom c ≈ c ∈ in_rel }}), glu_typ_pred)
(OEl : forall c (equiv_c_c : {{ Dom c ≈ c ∈ in_rel }}), glu_exp_pred) elem_rel,
{{ DG a ∈ glu_univ_elem i ↘ IP ↘ IEl }} /\
(forall c (equiv_c : {{ Dom c ≈ c ∈ in_rel }}) b,
{{ ⟦ B ⟧ ρ ↦ c ↘ b }} ->
{{ DG b ∈ glu_univ_elem i ↘ OP _ equiv_c ↘ OEl _ equiv_c }}) /\
{{ DF Π a ρ B ≈ Π a ρ B ∈ per_univ_elem i ↘ elem_rel }} /\
(P <∙> pi_glu_typ_pred i in_rel IP IEl OP) /\
(El <∙> pi_glu_exp_pred i in_rel IP IEl elem_rel OEl).
Proof.
intros *.
simpl.
intros Hinper Hglu.
basic_invert_glu_univ_elem Hglu.
handle_functional_glu_univ_elem.
handle_per_univ_elem_irrel.
do 5 eexists.
repeat split.
1,3: eassumption.
1: instantiate (1 := fun c equiv_c Γ A M m => forall (b : domain) Pb Elb,
{{ ⟦ B ⟧ ρ ↦ c ↘ b }} ->
{{ DG b ∈ glu_univ_elem i ↘ Pb ↘ Elb }} ->
{{ Γ ⊢ M : A ® m ∈ Elb }}).
1: instantiate (1 := fun c equiv_c Γ A => forall (b : domain) Pb Elb,
{{ ⟦ B ⟧ ρ ↦ c ↘ b }} ->
{{ DG b ∈ glu_univ_elem i ↘ Pb ↘ Elb }} ->
{{ Γ ⊢ A ® Pb }}).
2-5: intros []; econstructor; mauto.
all: intros.
- assert {{ Dom c ≈ c ∈ in_rel0 }} as equiv0_c by intuition.
assert {{ DG b ∈ glu_univ_elem i ↘ OP c equiv0_c ↘ OEl c equiv0_c }} by mauto 3.
apply -> simple_glu_univ_elem_morphism_iff; [| reflexivity | |]; [eauto | |].
+ intros ? ? ? ?.
split; intros; handle_functional_glu_univ_elem; intuition.
+ intros ? ?.
split; [intros; handle_functional_glu_univ_elem |]; intuition.
- assert {{ Dom m ≈ m ∈ in_rel0 }} as equiv0_m by intuition.
assert {{ DG b ∈ glu_univ_elem i ↘ OP m equiv0_m ↘ OEl m equiv0_m }} by mauto 3.
handle_functional_glu_univ_elem.
intuition.
- match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
destruct_rel_mod_eval.
intuition.
- assert {{ Dom n ≈ n ∈ in_rel0 }} as equiv0_n by intuition.
assert (exists mn : domain, {{ $| m & n |↘ mn }} /\ {{ Δ ⊢ M[σ] N : OT[σ,,N] ® mn ∈ OEl n equiv0_n }}) by mauto 3.
destruct_conjs.
eexists.
intuition.
assert {{ DG b ∈ glu_univ_elem i ↘ OP n equiv0_n ↘ OEl n equiv0_n }} by mauto 3.
handle_functional_glu_univ_elem.
intuition.
- assert (exists mn : domain,
{{ $| m & n |↘ mn }} /\
(forall (b : domain) (Pb : glu_typ_pred) (Elb : glu_exp_pred),
{{ ⟦ B ⟧ ρ ↦ n ↘ b }} ->
{{ DG b ∈ glu_univ_elem i ↘ Pb ↘ Elb }} ->
{{ Δ ⊢ M[σ] N : OT[σ,,N] ® mn ∈ Elb }})) by intuition.
destruct_conjs.
match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
handle_per_univ_elem_irrel.
destruct_rel_mod_eval.
destruct_rel_mod_app.
functional_eval_rewrite_clear.
eexists.
intuition.
Qed.
Lemma glu_univ_elem_pi_clean_inversion2 : forall {i a ρ B in_rel IP IEl P El},
{{ DF a ≈ a ∈ per_univ_elem i ↘ in_rel }} ->
{{ DG a ∈ glu_univ_elem i ↘ IP ↘ IEl }} ->
{{ DG Π a ρ B ∈ glu_univ_elem i ↘ P ↘ El }} ->
exists (OP : forall c (equiv_c_c : {{ Dom c ≈ c ∈ in_rel }}), glu_typ_pred)
(OEl : forall c (equiv_c_c : {{ Dom c ≈ c ∈ in_rel }}), glu_exp_pred) elem_rel,
(forall c (equiv_c : {{ Dom c ≈ c ∈ in_rel }}) b,
{{ ⟦ B ⟧ ρ ↦ c ↘ b }} ->
{{ DG b ∈ glu_univ_elem i ↘ OP _ equiv_c ↘ OEl _ equiv_c }}) /\
{{ DF Π a ρ B ≈ Π a ρ B ∈ per_univ_elem i ↘ elem_rel }} /\
(P <∙> pi_glu_typ_pred i in_rel IP IEl OP) /\
(El <∙> pi_glu_exp_pred i in_rel IP IEl elem_rel OEl).
Proof.
intros *.
simpl.
intros Hinper Hinglu Hglu.
unshelve eapply (glu_univ_elem_pi_clean_inversion1 _) in Hglu; shelve_unifiable; [eassumption |];
destruct Hglu as [? [? [? [? [? [? [? [? []]]]]]]]].
handle_functional_glu_univ_elem.
do 3 eexists.
repeat split; try eassumption;
intros []; econstructor; mauto.
Qed.
Ltac invert_glu_univ_elem H :=
(unshelve eapply (glu_univ_elem_pi_clean_inversion2 _ _) in H; shelve_unifiable; [eassumption | eassumption |];
destruct H as [? [? [? [? [? []]]]]])
+ (unshelve eapply (glu_univ_elem_pi_clean_inversion1 _) in H; shelve_unifiable; [eassumption |];
destruct H as [? [? [? [? [? [? [? [? []]]]]]]]])
+ basic_invert_glu_univ_elem H.
Lemma glu_univ_elem_resp_per_univ : forall i a a' P El,
{{ Dom a ≈ a' ∈ per_univ i }} ->
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ DG a' ∈ glu_univ_elem i ↘ P ↘ El }}.
Proof.
simpl.
intros * [elem_rel Hper] Horig.
pose proof Hper.
gen P El.
induction Hper using per_univ_elem_ind; intros; subst;
saturate_refl_for per_univ_elem;
invert_glu_univ_elem Horig; glu_univ_elem_econstructor; try eassumption; mauto;
handle_per_univ_elem_irrel;
handle_functional_glu_univ_elem.
- intros.
match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
destruct_rel_mod_eval.
handle_per_univ_elem_irrel.
intuition.
- reflexivity.
- apply neut_glu_typ_pred_morphism_glu_typ_pred_equivalence.
eassumption.
- apply neut_glu_exp_pred_morphism_glu_exp_pred_equivalence.
eassumption.
Qed.
Morphism instances for glu_univ_elem
Add Parametric Morphism i : (glu_univ_elem i)
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> per_univ i ==> iff as glu_univ_elem_morphism_iff.
Proof with mautosolve.
intros P P' HPP' El El' HElEl' a a' Haa'.
rewrite HPP', HElEl'.
split; intros; eapply glu_univ_elem_resp_per_univ; mauto.
symmetry; eassumption.
Qed.
Add Parametric Morphism i R : (glu_univ_elem i)
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> per_univ_elem i R ==> iff as glu_univ_elem_morphism_iff'.
Proof with mautosolve.
intros P P' HPP' El El' HElEl' **.
rewrite HPP', HElEl'.
split; intros; eapply glu_univ_elem_resp_per_univ; mauto.
symmetry; mauto.
Qed.
Ltac saturate_glu_by_per1 :=
match goal with
| H : glu_univ_elem ?i ?P ?El ?a,
H1 : per_univ_elem ?i _ ?a ?a' |- _ =>
assert (glu_univ_elem i P El a') by (rewrite <- H1; eassumption);
fail_if_dup
| H : glu_univ_elem ?i ?P ?El ?a',
H1 : per_univ_elem ?i _ ?a ?a' |- _ =>
assert (glu_univ_elem i P El a) by (rewrite H1; eassumption);
fail_if_dup
end.
Ltac saturate_glu_by_per :=
clear_dups;
repeat saturate_glu_by_per1.
Lemma per_univ_glu_univ_elem : forall i a,
{{ Dom a ≈ a ∈ per_univ i }} ->
exists P El, {{ DG a ∈ glu_univ_elem i ↘ P ↘ El }}.
Proof.
simpl.
intros * [? Hper].
induction Hper using per_univ_elem_ind; intros;
try solve [do 2 eexists; unshelve (glu_univ_elem_econstructor; try reflexivity; subst; trivial)].
- destruct_conjs.
do 2 eexists.
glu_univ_elem_econstructor; try (eassumption + reflexivity).
+ saturate_refl; eassumption.
+ instantiate (1 := fun (c : domain) (equiv_c : in_rel c c) Γ A M m =>
forall b P El,
{{ ⟦ B' ⟧ ρ' ↦ c ↘ b }} ->
glu_univ_elem i P El b ->
{{ Γ ⊢ M : A ® m ∈ El }}).
instantiate (1 := fun (c : domain) (equiv_c : in_rel c c) Γ A =>
forall b P El,
{{ ⟦ B' ⟧ ρ' ↦ c ↘ b }} ->
glu_univ_elem i P El b ->
{{ Γ ⊢ A ® P }}).
intros.
(on_all_hyp: destruct_rel_by_assumption in_rel).
handle_per_univ_elem_irrel.
rewrite simple_glu_univ_elem_morphism_iff; try (eassumption + reflexivity);
split; intros; handle_functional_glu_univ_elem; intuition.
+ enough {{ DF Π a ρ B ≈ Π a' ρ' B' ∈ per_univ_elem i ↘ elem_rel }} by (etransitivity; [symmetry |]; eassumption).
per_univ_elem_econstructor; mauto.
intros.
(on_all_hyp: destruct_rel_by_assumption in_rel).
econstructor; mauto.
- do 2 eexists.
glu_univ_elem_econstructor; try reflexivity; mauto.
Qed.
#[export]
Hint Resolve per_univ_glu_univ_elem : mctt.
Corollary per_univ_elem_glu_univ_elem : forall i a R,
{{ DF a ≈ a ∈ per_univ_elem i ↘ R }} ->
exists P El, {{ DG a ∈ glu_univ_elem i ↘ P ↘ El }}.
Proof.
intros.
apply per_univ_glu_univ_elem; mauto.
Qed.
#[export]
Hint Resolve per_univ_elem_glu_univ_elem : mctt.
Ltac saturate_glu_info1 :=
match goal with
| H : glu_univ_elem _ ?P _ _,
H1 : ?P _ _ |- _ =>
pose proof (glu_univ_elem_univ_lvl _ _ _ _ H _ _ H1);
fail_if_dup
| H : glu_univ_elem _ _ ?El _,
H1 : ?El _ _ _ _ |- _ =>
pose proof (glu_univ_elem_trm_escape _ _ _ _ H _ _ _ _ H1);
fail_if_dup
end.
Ltac saturate_glu_info :=
clear_dups;
repeat saturate_glu_info1.
#[local]
Hint Rewrite -> sub_decompose_q using solve [mauto 4] : mctt.
Lemma glu_univ_elem_typ_monotone : forall i a P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Δ σ Γ A,
{{ Γ ⊢ A ® P }} ->
{{ Δ ⊢w σ : Γ }} ->
{{ Δ ⊢ A[σ] ® P }}.
Proof.
simpl. induction 1 using glu_univ_elem_ind; intros;
saturate_weakening_escape;
handle_functional_glu_univ_elem;
simpl in *;
try solve [bulky_rewrite].
- simpl_glu_rel. econstructor; eauto; try solve [bulky_rewrite]; mauto 3.
intros.
saturate_weakening_escape.
saturate_glu_info.
invert_per_univ_elem H3.
destruct_rel_mod_eval.
simplify_evals.
deepexec H1 ltac:(fun H => pose proof H).
autorewrite with mctt in *.
mauto 3.
- destruct_conjs.
split; [mauto 3 |].
intros.
saturate_weakening_escape.
autorewrite with mctt.
mauto 3.
Qed.
Lemma glu_univ_elem_exp_monotone : forall i a P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Δ σ Γ M A m,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Δ ⊢w σ : Γ }} ->
{{ Δ ⊢ M[σ] : A[σ] ® m ∈ El }}.
Proof.
simpl. induction 1 using glu_univ_elem_ind; intros;
saturate_weakening_escape;
handle_functional_glu_univ_elem;
simpl in *;
destruct_all.
- repeat eexists; mauto 2; bulky_rewrite.
eapply glu_univ_elem_typ_monotone; eauto.
- repeat eexists; mauto 2; bulky_rewrite.
- simpl_glu_rel.
econstructor; mauto 4;
intros;
saturate_weakening_escape.
+ eapply glu_univ_elem_typ_monotone; eauto.
+ saturate_glu_info.
invert_per_univ_elem H3.
apply_equiv_left.
destruct_rel_mod_eval.
destruct_rel_mod_app.
simplify_evals.
deepexec H1 ltac:(fun H => pose proof H).
autorewrite with mctt in *.
repeat eexists; eauto.
assert {{ Δ0 ⊢s σ0,,N : Δ, IT[σ] }}.
{
econstructor; mauto 2.
bulky_rewrite.
}
assert {{Δ0 ⊢ M[σ][σ0] N ≈ M[σ∘σ0] N : OT [σ∘σ0,,N]}}.
{
rewrite <- @sub_eq_q_sigma_id_extend; mauto 4.
rewrite <- @exp_eq_sub_compose_typ; mauto 3;
[eapply wf_exp_eq_app_cong' |];
mauto 4.
symmetry.
bulky_rewrite_in H4.
assert {{ Δ0 ⊢ Π IT[σ∘σ0] (OT[q (σ∘σ0)]) ≈ (Π IT OT)[σ∘σ0] : Type@_ }} by mauto.
eapply wf_exp_eq_conv'; mauto 4.
}
bulky_rewrite.
edestruct H10 with (n := n) as [? []];
simplify_evals; [| | eassumption];
mauto.
- simpl_glu_rel.
econstructor; repeat split; mauto 3;
intros;
saturate_weakening_escape.
+ autorewrite with mctt.
mauto 3.
+ autorewrite with mctt.
etransitivity.
* symmetry.
eapply wf_exp_eq_sub_compose;
mauto 3.
* mauto 3.
Qed.
Add Parametric Morphism i a : (glu_elem_bot i a)
with signature wf_ctx_eq ==> eq ==> eq ==> eq ==> iff as glu_elem_bot_morphism_iff1.
Proof.
intros Γ Γ' HΓΓ' *.
split; intros []; econstructor; mauto 4; [rewrite <- HΓΓ' | rewrite -> HΓΓ']; eassumption.
Qed.
Add Parametric Morphism i a Γ : (glu_elem_bot i a Γ)
with signature wf_exp_eq Γ {{{ Type@i }}} ==> eq ==> eq ==> iff as glu_elem_bot_morphism_iff2.
Proof.
intros A A' HAA' *.
split; intros []; econstructor; mauto 3; [rewrite <- HAA' | | rewrite -> HAA' |];
try eassumption;
intros;
assert {{ Δ ⊢ A[σ] ≈ A'[σ] : Type@i }} as HAσA'σ by mauto 4;
[rewrite <- HAσA'σ | rewrite -> HAσA'σ];
mauto.
Qed.
Add Parametric Morphism i a Γ A : (glu_elem_bot i a Γ A)
with signature wf_exp_eq Γ A ==> eq ==> iff as glu_elem_bot_morphism_iff3.
Proof.
intros M M' HMM' *.
split; intros []; econstructor; mauto 3; try (gen_presup HMM'; eassumption);
intros;
assert {{ Δ ⊢ M[σ] ≈ M'[σ] : A[σ] }} as HMσM'σ by mauto 4;
[rewrite <- HMσM'σ | rewrite -> HMσM'σ];
mauto.
Qed.
Add Parametric Morphism i a : (glu_elem_top i a)
with signature wf_ctx_eq ==> eq ==> eq ==> eq ==> iff as glu_elem_top_morphism_iff1.
Proof.
intros Γ Γ' HΓΓ' *.
split; intros []; econstructor; mauto 4; [rewrite <- HΓΓ' | rewrite -> HΓΓ']; eassumption.
Qed.
Add Parametric Morphism i a Γ : (glu_elem_top i a Γ)
with signature wf_exp_eq Γ {{{ Type@i }}} ==> eq ==> eq ==> iff as glu_elem_top_morphism_iff2.
Proof.
intros A A' HAA' *.
split; intros []; econstructor; mauto 3; [rewrite <- HAA' | | rewrite -> HAA' |];
try eassumption;
intros;
assert {{ Δ ⊢ A[σ] ≈ A'[σ] : Type@i }} as HAσA'σ by mauto 4;
[rewrite <- HAσA'σ | rewrite -> HAσA'σ];
mauto.
Qed.
Add Parametric Morphism i a Γ A : (glu_elem_top i a Γ A)
with signature wf_exp_eq Γ A ==> eq ==> iff as glu_elem_top_morphism_iff3.
Proof.
intros M M' HMM' *.
split; intros []; econstructor; mauto 3; try (gen_presup HMM'; eassumption);
intros;
assert {{ Δ ⊢ M[σ] ≈ M'[σ] : A[σ] }} as HMσM'σ by mauto 4;
[rewrite <- HMσM'σ | rewrite -> HMσM'σ];
mauto.
Qed.
Add Parametric Morphism i a : (glu_typ_top i a)
with signature wf_ctx_eq ==> eq ==> iff as glu_typ_top_morphism_iff1.
Proof.
intros Γ Γ' HΓΓ' *.
split; intros []; econstructor; mauto 4.
Qed.
Add Parametric Morphism i a Γ : (glu_typ_top i a Γ)
with signature wf_exp_eq Γ {{{ Type@i }}} ==> iff as glu_typ_top_morphism_iff2.
Proof.
intros A A' HAA' *.
split; intros []; econstructor; mauto 3;
try (gen_presup HAA'; eassumption);
intros;
assert {{ Δ ⊢ A[σ] ≈ A'[σ] : Type@i }} as HAσA'σ by mauto 4;
[rewrite <- HAσA'σ | rewrite -> HAσA'σ];
mauto.
Qed.
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> per_univ i ==> iff as glu_univ_elem_morphism_iff.
Proof with mautosolve.
intros P P' HPP' El El' HElEl' a a' Haa'.
rewrite HPP', HElEl'.
split; intros; eapply glu_univ_elem_resp_per_univ; mauto.
symmetry; eassumption.
Qed.
Add Parametric Morphism i R : (glu_univ_elem i)
with signature glu_typ_pred_equivalence ==> glu_exp_pred_equivalence ==> per_univ_elem i R ==> iff as glu_univ_elem_morphism_iff'.
Proof with mautosolve.
intros P P' HPP' El El' HElEl' **.
rewrite HPP', HElEl'.
split; intros; eapply glu_univ_elem_resp_per_univ; mauto.
symmetry; mauto.
Qed.
Ltac saturate_glu_by_per1 :=
match goal with
| H : glu_univ_elem ?i ?P ?El ?a,
H1 : per_univ_elem ?i _ ?a ?a' |- _ =>
assert (glu_univ_elem i P El a') by (rewrite <- H1; eassumption);
fail_if_dup
| H : glu_univ_elem ?i ?P ?El ?a',
H1 : per_univ_elem ?i _ ?a ?a' |- _ =>
assert (glu_univ_elem i P El a) by (rewrite H1; eassumption);
fail_if_dup
end.
Ltac saturate_glu_by_per :=
clear_dups;
repeat saturate_glu_by_per1.
Lemma per_univ_glu_univ_elem : forall i a,
{{ Dom a ≈ a ∈ per_univ i }} ->
exists P El, {{ DG a ∈ glu_univ_elem i ↘ P ↘ El }}.
Proof.
simpl.
intros * [? Hper].
induction Hper using per_univ_elem_ind; intros;
try solve [do 2 eexists; unshelve (glu_univ_elem_econstructor; try reflexivity; subst; trivial)].
- destruct_conjs.
do 2 eexists.
glu_univ_elem_econstructor; try (eassumption + reflexivity).
+ saturate_refl; eassumption.
+ instantiate (1 := fun (c : domain) (equiv_c : in_rel c c) Γ A M m =>
forall b P El,
{{ ⟦ B' ⟧ ρ' ↦ c ↘ b }} ->
glu_univ_elem i P El b ->
{{ Γ ⊢ M : A ® m ∈ El }}).
instantiate (1 := fun (c : domain) (equiv_c : in_rel c c) Γ A =>
forall b P El,
{{ ⟦ B' ⟧ ρ' ↦ c ↘ b }} ->
glu_univ_elem i P El b ->
{{ Γ ⊢ A ® P }}).
intros.
(on_all_hyp: destruct_rel_by_assumption in_rel).
handle_per_univ_elem_irrel.
rewrite simple_glu_univ_elem_morphism_iff; try (eassumption + reflexivity);
split; intros; handle_functional_glu_univ_elem; intuition.
+ enough {{ DF Π a ρ B ≈ Π a' ρ' B' ∈ per_univ_elem i ↘ elem_rel }} by (etransitivity; [symmetry |]; eassumption).
per_univ_elem_econstructor; mauto.
intros.
(on_all_hyp: destruct_rel_by_assumption in_rel).
econstructor; mauto.
- do 2 eexists.
glu_univ_elem_econstructor; try reflexivity; mauto.
Qed.
#[export]
Hint Resolve per_univ_glu_univ_elem : mctt.
Corollary per_univ_elem_glu_univ_elem : forall i a R,
{{ DF a ≈ a ∈ per_univ_elem i ↘ R }} ->
exists P El, {{ DG a ∈ glu_univ_elem i ↘ P ↘ El }}.
Proof.
intros.
apply per_univ_glu_univ_elem; mauto.
Qed.
#[export]
Hint Resolve per_univ_elem_glu_univ_elem : mctt.
Ltac saturate_glu_info1 :=
match goal with
| H : glu_univ_elem _ ?P _ _,
H1 : ?P _ _ |- _ =>
pose proof (glu_univ_elem_univ_lvl _ _ _ _ H _ _ H1);
fail_if_dup
| H : glu_univ_elem _ _ ?El _,
H1 : ?El _ _ _ _ |- _ =>
pose proof (glu_univ_elem_trm_escape _ _ _ _ H _ _ _ _ H1);
fail_if_dup
end.
Ltac saturate_glu_info :=
clear_dups;
repeat saturate_glu_info1.
#[local]
Hint Rewrite -> sub_decompose_q using solve [mauto 4] : mctt.
Lemma glu_univ_elem_typ_monotone : forall i a P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Δ σ Γ A,
{{ Γ ⊢ A ® P }} ->
{{ Δ ⊢w σ : Γ }} ->
{{ Δ ⊢ A[σ] ® P }}.
Proof.
simpl. induction 1 using glu_univ_elem_ind; intros;
saturate_weakening_escape;
handle_functional_glu_univ_elem;
simpl in *;
try solve [bulky_rewrite].
- simpl_glu_rel. econstructor; eauto; try solve [bulky_rewrite]; mauto 3.
intros.
saturate_weakening_escape.
saturate_glu_info.
invert_per_univ_elem H3.
destruct_rel_mod_eval.
simplify_evals.
deepexec H1 ltac:(fun H => pose proof H).
autorewrite with mctt in *.
mauto 3.
- destruct_conjs.
split; [mauto 3 |].
intros.
saturate_weakening_escape.
autorewrite with mctt.
mauto 3.
Qed.
Lemma glu_univ_elem_exp_monotone : forall i a P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Δ σ Γ M A m,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Δ ⊢w σ : Γ }} ->
{{ Δ ⊢ M[σ] : A[σ] ® m ∈ El }}.
Proof.
simpl. induction 1 using glu_univ_elem_ind; intros;
saturate_weakening_escape;
handle_functional_glu_univ_elem;
simpl in *;
destruct_all.
- repeat eexists; mauto 2; bulky_rewrite.
eapply glu_univ_elem_typ_monotone; eauto.
- repeat eexists; mauto 2; bulky_rewrite.
- simpl_glu_rel.
econstructor; mauto 4;
intros;
saturate_weakening_escape.
+ eapply glu_univ_elem_typ_monotone; eauto.
+ saturate_glu_info.
invert_per_univ_elem H3.
apply_equiv_left.
destruct_rel_mod_eval.
destruct_rel_mod_app.
simplify_evals.
deepexec H1 ltac:(fun H => pose proof H).
autorewrite with mctt in *.
repeat eexists; eauto.
assert {{ Δ0 ⊢s σ0,,N : Δ, IT[σ] }}.
{
econstructor; mauto 2.
bulky_rewrite.
}
assert {{Δ0 ⊢ M[σ][σ0] N ≈ M[σ∘σ0] N : OT [σ∘σ0,,N]}}.
{
rewrite <- @sub_eq_q_sigma_id_extend; mauto 4.
rewrite <- @exp_eq_sub_compose_typ; mauto 3;
[eapply wf_exp_eq_app_cong' |];
mauto 4.
symmetry.
bulky_rewrite_in H4.
assert {{ Δ0 ⊢ Π IT[σ∘σ0] (OT[q (σ∘σ0)]) ≈ (Π IT OT)[σ∘σ0] : Type@_ }} by mauto.
eapply wf_exp_eq_conv'; mauto 4.
}
bulky_rewrite.
edestruct H10 with (n := n) as [? []];
simplify_evals; [| | eassumption];
mauto.
- simpl_glu_rel.
econstructor; repeat split; mauto 3;
intros;
saturate_weakening_escape.
+ autorewrite with mctt.
mauto 3.
+ autorewrite with mctt.
etransitivity.
* symmetry.
eapply wf_exp_eq_sub_compose;
mauto 3.
* mauto 3.
Qed.
Add Parametric Morphism i a : (glu_elem_bot i a)
with signature wf_ctx_eq ==> eq ==> eq ==> eq ==> iff as glu_elem_bot_morphism_iff1.
Proof.
intros Γ Γ' HΓΓ' *.
split; intros []; econstructor; mauto 4; [rewrite <- HΓΓ' | rewrite -> HΓΓ']; eassumption.
Qed.
Add Parametric Morphism i a Γ : (glu_elem_bot i a Γ)
with signature wf_exp_eq Γ {{{ Type@i }}} ==> eq ==> eq ==> iff as glu_elem_bot_morphism_iff2.
Proof.
intros A A' HAA' *.
split; intros []; econstructor; mauto 3; [rewrite <- HAA' | | rewrite -> HAA' |];
try eassumption;
intros;
assert {{ Δ ⊢ A[σ] ≈ A'[σ] : Type@i }} as HAσA'σ by mauto 4;
[rewrite <- HAσA'σ | rewrite -> HAσA'σ];
mauto.
Qed.
Add Parametric Morphism i a Γ A : (glu_elem_bot i a Γ A)
with signature wf_exp_eq Γ A ==> eq ==> iff as glu_elem_bot_morphism_iff3.
Proof.
intros M M' HMM' *.
split; intros []; econstructor; mauto 3; try (gen_presup HMM'; eassumption);
intros;
assert {{ Δ ⊢ M[σ] ≈ M'[σ] : A[σ] }} as HMσM'σ by mauto 4;
[rewrite <- HMσM'σ | rewrite -> HMσM'σ];
mauto.
Qed.
Add Parametric Morphism i a : (glu_elem_top i a)
with signature wf_ctx_eq ==> eq ==> eq ==> eq ==> iff as glu_elem_top_morphism_iff1.
Proof.
intros Γ Γ' HΓΓ' *.
split; intros []; econstructor; mauto 4; [rewrite <- HΓΓ' | rewrite -> HΓΓ']; eassumption.
Qed.
Add Parametric Morphism i a Γ : (glu_elem_top i a Γ)
with signature wf_exp_eq Γ {{{ Type@i }}} ==> eq ==> eq ==> iff as glu_elem_top_morphism_iff2.
Proof.
intros A A' HAA' *.
split; intros []; econstructor; mauto 3; [rewrite <- HAA' | | rewrite -> HAA' |];
try eassumption;
intros;
assert {{ Δ ⊢ A[σ] ≈ A'[σ] : Type@i }} as HAσA'σ by mauto 4;
[rewrite <- HAσA'σ | rewrite -> HAσA'σ];
mauto.
Qed.
Add Parametric Morphism i a Γ A : (glu_elem_top i a Γ A)
with signature wf_exp_eq Γ A ==> eq ==> iff as glu_elem_top_morphism_iff3.
Proof.
intros M M' HMM' *.
split; intros []; econstructor; mauto 3; try (gen_presup HMM'; eassumption);
intros;
assert {{ Δ ⊢ M[σ] ≈ M'[σ] : A[σ] }} as HMσM'σ by mauto 4;
[rewrite <- HMσM'σ | rewrite -> HMσM'σ];
mauto.
Qed.
Add Parametric Morphism i a : (glu_typ_top i a)
with signature wf_ctx_eq ==> eq ==> iff as glu_typ_top_morphism_iff1.
Proof.
intros Γ Γ' HΓΓ' *.
split; intros []; econstructor; mauto 4.
Qed.
Add Parametric Morphism i a Γ : (glu_typ_top i a Γ)
with signature wf_exp_eq Γ {{{ Type@i }}} ==> iff as glu_typ_top_morphism_iff2.
Proof.
intros A A' HAA' *.
split; intros []; econstructor; mauto 3;
try (gen_presup HAA'; eassumption);
intros;
assert {{ Δ ⊢ A[σ] ≈ A'[σ] : Type@i }} as HAσA'σ by mauto 4;
[rewrite <- HAσA'σ | rewrite -> HAσA'σ];
mauto.
Qed.
Simple Morphism instance for glu_ctx_env
Add Parametric Morphism : glu_ctx_env
with signature glu_sub_pred_equivalence ==> eq ==> iff as simple_glu_ctx_env_morphism_iff.
Proof.
intros Sb Sb' HSbSb' a.
split; intro Horig; [gen Sb' | gen Sb];
induction Horig; econstructor;
try (etransitivity; [symmetry + idtac|]; eassumption); eauto.
Qed.
with signature glu_sub_pred_equivalence ==> eq ==> iff as simple_glu_ctx_env_morphism_iff.
Proof.
intros Sb Sb' HSbSb' a.
split; intro Horig; [gen Sb' | gen Sb];
induction Horig; econstructor;
try (etransitivity; [symmetry + idtac|]; eassumption); eauto.
Qed.