Mctt.Core.Syntactic.System.Lemmas

From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Syntactic.System Require Import Definitions.
Import Syntax_Notations.

Core Presuppositions

Basic inversion

Lemma ctx_lookup_lt : forall {Γ A x},
    {{ #x : A Γ }} ->
    x < length Γ.
Proof.
  induction 1; simpl; lia.
Qed.
#[export]
Hint Resolve ctx_lookup_lt : mctt.

Lemma ctx_decomp : forall {Γ A}, {{ Γ , A }} -> {{ Γ }} /\ exists i, {{ Γ A : Type@i }}.
Proof with now eauto.
  inversion 1...
Qed.

#[export]
Hint Resolve ctx_decomp : mctt.

Corollary ctx_decomp_left : forall {Γ A}, {{ Γ , A }} -> {{ Γ }}.
Proof with easy.
  intros * ?%ctx_decomp...
Qed.

Corollary ctx_decomp_right : forall {Γ A}, {{ Γ , A }} -> exists i, {{ Γ A : Type@i }}.
Proof with easy.
  intros * ?%ctx_decomp...
Qed.

#[export]
Hint Resolve ctx_decomp_left ctx_decomp_right : mctt.

Context Presuppositions


Lemma presup_ctx_eq : forall {Γ Δ}, {{ Γ Δ }} -> {{ Γ }} /\ {{ Δ }}.
Proof with mautosolve.
  induction 1; destruct_pairs...
Qed.

Corollary presup_ctx_eq_left : forall {Γ Δ}, {{ Γ Δ }} -> {{ Γ }}.
Proof with easy.
  intros * ?%presup_ctx_eq...
Qed.

Corollary presup_ctx_eq_right : forall {Γ Δ}, {{ Γ Δ }} -> {{ Δ }}.
Proof with easy.
  intros * ?%presup_ctx_eq...
Qed.

#[export]
Hint Resolve presup_ctx_eq presup_ctx_eq_left presup_ctx_eq_right : mctt.

Lemma presup_sub : forall {Γ Δ σ}, {{ Γ s σ : Δ }} -> {{ Γ }} /\ {{ Δ }}.
Proof with mautosolve.
  induction 1; destruct_pairs...
Qed.

Corollary presup_sub_left : forall {Γ Δ σ}, {{ Γ s σ : Δ }} -> {{ Γ }}.
Proof with easy.
  intros * ?%presup_sub...
Qed.

Corollary presup_sub_right : forall {Γ Δ σ}, {{ Γ s σ : Δ }} -> {{ Δ }}.
Proof with easy.
  intros * ?%presup_sub...
Qed.

#[export]
Hint Resolve presup_sub presup_sub_left presup_sub_right : mctt.

With presup_sub, we can prove similar for exp.

Lemma presup_exp_ctx : forall {Γ M A}, {{ Γ M : A }} -> {{ Γ }}.
Proof with mautosolve.
  induction 1...
Qed.

#[export]
Hint Resolve presup_exp_ctx : mctt.

and other presuppositions about context well-formedness.

Lemma presup_sub_eq_ctx : forall {Γ Δ σ σ'}, {{ Γ s σ σ' : Δ }} -> {{ Γ }} /\ {{ Δ }}.
Proof with mautosolve.
  induction 1; destruct_pairs...
Qed.

Corollary presup_sub_eq_ctx_left : forall {Γ Δ σ σ'}, {{ Γ s σ σ' : Δ }} -> {{ Γ }}.
Proof with easy.
  intros * ?%presup_sub_eq_ctx...
Qed.

Corollary presup_sub_eq_ctx_right : forall {Γ Δ σ σ'}, {{ Γ s σ σ' : Δ }} -> {{ Δ }}.
Proof with easy.
  intros * ?%presup_sub_eq_ctx...
Qed.

#[export]
Hint Resolve presup_sub_eq_ctx presup_sub_eq_ctx_left presup_sub_eq_ctx_right : mctt.

Lemma presup_exp_eq_ctx : forall {Γ M M' A}, {{ Γ M M' : A }} -> {{ Γ }}.
Proof with mautosolve 2.
  induction 1...
Qed.

#[export]
Hint Resolve presup_exp_eq_ctx : mctt.

Immediate Results of Context Presuppositions

From above, we can get following helper lemmas about {{{ Type@i }}} and {{{ }}}.

Lemma exp_sub_typ : forall {Δ Γ A σ i},
    {{ Δ A : Type@i }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ A[σ] : Type@i }}.
Proof with mautosolve 3.
  intros.
  econstructor; mauto 3.
  econstructor...
Qed.

#[export]
Hint Resolve exp_sub_typ : mctt.

Lemma exp_sub_nat : forall {Δ Γ M σ},
    {{ Δ M : }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ M[σ] : }}.
Proof with mautosolve 3.
  intros.
  econstructor; mauto 3.
  econstructor...
Qed.

#[export]
Hint Resolve exp_sub_nat : mctt.

Also we can recover cumulativity rules we had before adding subtyping.

Lemma wf_cumu : forall Γ A i,
    {{ Γ A : Type@i }} ->
    {{ Γ A : Type@(S i) }}.
Proof with mautosolve.
  intros.
  enough {{ Γ }}...
Qed.

Lemma wf_exp_eq_cumu : forall Γ A A' i,
    {{ Γ A A' : Type@i }} ->
    {{ Γ A A' : Type@(S i) }}.
Proof with mautosolve.
  intros.
  enough {{ Γ }}...
Qed.

#[export]
Hint Resolve wf_cumu wf_exp_eq_cumu : mctt.

We can prove some additional lemmas for type presuppositions as well.

Lemma lift_exp_ge : forall {Γ A n m},
    n <= m ->
    {{ Γ A : Type@n }} ->
    {{ Γ A : Type@m }}.
Proof with mautosolve.
  induction 1; intros; mauto.
Qed.

#[export]
Hint Resolve lift_exp_ge : mctt.

Corollary lift_exp_max_left : forall {Γ A n} m,
    {{ Γ A : Type@n }} ->
    {{ Γ A : Type@(max n m) }}.
Proof with mautosolve.
  intros.
  assert (n <= max n m) by lia...
Qed.

Corollary lift_exp_max_right : forall {Γ A} n {m},
    {{ Γ A : Type@m }} ->
    {{ Γ A : Type@(max n m) }}.
Proof with mautosolve.
  intros.
  assert (m <= max n m) by lia...
Qed.

Lemma lift_exp_eq_ge : forall {Γ A A' n m},
    n <= m ->
    {{ Γ A A': Type@n }} ->
    {{ Γ A A' : Type@m }}.
Proof with mautosolve.
  induction 1; subst; mauto.
Qed.

#[export]
Hint Resolve lift_exp_eq_ge : mctt.

Corollary lift_exp_eq_max_left : forall {Γ A A' n} m,
    {{ Γ A A' : Type@n }} ->
    {{ Γ A A' : Type@(max n m) }}.
Proof with mautosolve.
  intros.
  assert (n <= max n m) by lia...
Qed.

Corollary lift_exp_eq_max_right : forall {Γ A A'} n {m},
    {{ Γ A A' : Type@m }} ->
    {{ Γ A A' : Type@(max n m) }}.
Proof with mautosolve.
  intros.
  assert (m <= max n m) by lia...
Qed.

Types Presuppositions


Lemma presup_ctx_lookup_typ : forall {Γ A x},
    {{ Γ }} ->
    {{ #x : A Γ }} ->
    exists i, {{ Γ A : Type@i }}.
Proof with mautosolve 4.
  intros * .
  induction 1; inversion_clear ;
    [assert {{ Γ, A Type@i[Wk] Type@i : Type@(S i) }} by mauto 4
    | assert (exists i, {{ Γ A : Type@i }}) as [] by eauto]; econstructor...
Qed.

#[export]
Hint Resolve presup_ctx_lookup_typ : mctt.

Lemma presup_exp_typ : forall {Γ M A},
    {{ Γ M : A }} ->
    exists i, {{ Γ A : Type@i }}.
Proof.
  induction 1; assert {{ Γ }} by mauto 3; destruct_conjs; mauto 3.
  - enough {{ Γ s Id,,M : Γ, }} by mauto 3.
    do 3 (econstructor; mauto 3).
  - eexists; mauto 4 using lift_exp_max_left, lift_exp_max_right.
  - enough {{ Γ s Id,,N : Γ, A }} by mauto 3.
    do 3 (econstructor; mauto 3).
Qed.

Lemma presup_exp : forall {Γ M A},
    {{ Γ M : A }} ->
    {{ Γ }} /\ exists i, {{ Γ A : Type@i }}.
Proof.
  mauto 4 using presup_exp_typ.
Qed.

Recover some rules we had before adding subtyping. Rest are recovered after presupposition lemmas (in SystemOpt).

Lemma wf_ctx_sub_refl : forall Γ Δ,
    {{ Γ Δ }} ->
    {{ Γ Δ }}.
Proof. induction 1; mauto. Qed.

#[export]
Hint Resolve wf_ctx_sub_refl : mctt.

Lemma wf_conv : forall Γ M A i A',
    {{ Γ M : A }} ->
    
The next argument will be removed in SystemOpt
    {{ Γ A' : Type@i }} ->
    {{ Γ A A' : Type@i }} ->
    {{ Γ M : A' }}.
Proof. mauto. Qed.

#[export]
Hint Resolve wf_conv : mctt.

Lemma wf_sub_conv : forall Γ σ Δ Δ',
  {{ Γ s σ : Δ }} ->
  {{ Δ Δ' }} ->
  {{ Γ s σ : Δ' }}.
Proof. mauto. Qed.

#[export]
Hint Resolve wf_sub_conv : mctt.

Lemma wf_exp_eq_conv : forall Γ M M' A A' i,
   {{ Γ M M' : A }} ->
   
The next argument will be removed in SystemOpt
   {{ Γ A' : Type@i }} ->
   {{ Γ A A' : Type@i }} ->
   {{ Γ M M' : A' }}.
Proof. mauto. Qed.

#[export]
Hint Resolve wf_exp_eq_conv : mctt.

Lemma wf_sub_eq_conv : forall Γ σ σ' Δ Δ',
    {{ Γ s σ σ' : Δ }} ->
    {{ Δ Δ' }} ->
    {{ Γ s σ σ' : Δ' }}.
Proof. mauto. Qed.

#[export]
Hint Resolve wf_sub_eq_conv : mctt.

Add Parametric Morphism Γ : (wf_sub_eq Γ)
    with signature wf_ctx_eq ==> eq ==> eq ==> iff as wf_sub_eq_morphism_iff3.
Proof.
  intros Δ Δ' H **; split; [| symmetry in H]; mauto.
Qed.

Additional Lemmas for Syntactic PERs


Lemma exp_eq_refl : forall {Γ M A},
    {{ Γ M : A }} ->
    {{ Γ M M : A }}.
Proof. mauto. Qed.

#[export]
Hint Resolve exp_eq_refl : mctt.

Lemma exp_eq_trans_typ_max : forall {Γ i i' A A' A''},
    {{ Γ A A' : Type@i }} ->
    {{ Γ A' A'' : Type@i' }} ->
    {{ Γ A A'' : Type@(max i i') }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ A A' : Type@(max i i') }} by eauto using lift_exp_eq_max_left.
  assert {{ Γ A' A'' : Type@(max i i') }} by eauto using lift_exp_eq_max_right...
Qed.

#[export]
Hint Resolve exp_eq_trans_typ_max : mctt.

Lemma sub_eq_refl : forall {Γ σ Δ},
    {{ Γ s σ : Δ }} ->
    {{ Γ s σ σ : Δ }}.
Proof. mauto. Qed.

#[export]
Hint Resolve sub_eq_refl : mctt.

Lemmas for exp of {{{ Type@i }}}


Lemma exp_eq_sub_cong_typ1 : forall {Δ Γ A A' σ i},
    {{ Δ A A' : Type@i }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ A[σ] A'[σ] : Type@i }}.
Proof with mautosolve 3.
  intros.
  eapply wf_exp_eq_conv...
Qed.

Lemma exp_eq_sub_cong_typ2' : forall {Δ Γ A σ τ i},
    {{ Δ A : Type@i }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ s σ τ : Δ }} ->
    {{ Γ A[σ] A[τ] : Type@i }}.
Proof with mautosolve 3.
  intros.
  eapply wf_exp_eq_conv...
Qed.

Lemma exp_eq_sub_compose_typ : forall {Ψ Δ Γ A σ τ i},
    {{ Ψ A : Type@i }} ->
    {{ Δ s σ : Ψ }} ->
    {{ Γ s τ : Δ }} ->
    {{ Γ A[σ][τ] A[στ] : Type@i }}.
Proof with mautosolve 3.
  intros.
  eapply wf_exp_eq_conv...
Qed.

#[export]
Hint Resolve exp_eq_sub_cong_typ1 exp_eq_sub_cong_typ2' exp_eq_sub_compose_typ : mctt.

Lemma exp_eq_typ_sub_sub : forall {Γ Δ Ψ σ τ i},
    {{ Δ s σ : Ψ }} ->
    {{ Γ s τ : Δ }} ->
    {{ Γ Type@i[σ][τ] Type@i : Type@(S i) }}.
Proof. mauto. Qed.

#[export]
Hint Resolve exp_eq_typ_sub_sub : mctt.
#[export]
Hint Rewrite -> @exp_eq_sub_compose_typ @exp_eq_typ_sub_sub using mauto 4 : mctt.

Lemma functional_ctx_lookup : forall {Γ A A' x},
    {{ #x : A Γ }} ->
    {{ #x : A' Γ }} ->
    A = A'.
Proof with mautosolve.
  intros * Hx Hx'; gen A'.
  induction Hx as [|* ? IHHx]; intros; inversion_clear Hx';
    f_equal;
    intuition.
Qed.

Lemma vlookup_0_typ : forall {Γ i},
    {{ Γ }} ->
    {{ Γ, Type@i # 0 : Type@i }}.
Proof with mautosolve 4.
  intros.
  eapply wf_conv; mauto 4.
  econstructor...
Qed.

Lemma vlookup_1_typ : forall {Γ i A j},
    {{ Γ, Type@i A : Type@j }} ->
    {{ Γ, Type@i, A # 1 : Type@i }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ, Type@i s Wk : Γ }} by mauto 4.
  assert {{ Γ, Type@i, A s Wk : Γ, Type@i }} by mauto 4.
  eapply wf_conv...
Qed.

#[export]
Hint Resolve vlookup_0_typ vlookup_1_typ : mctt.

Lemma exp_sub_typ_helper : forall {Γ σ Δ M i},
    {{ Γ s σ : Δ }} ->
    {{ Γ M : Type@i }} ->
    {{ Γ M : Type@i[σ] }}.
Proof.
  intros.
  do 2 (econstructor; mauto 4).
Qed.

#[export]
Hint Resolve exp_sub_typ_helper : mctt.

Lemma exp_eq_var_0_sub_typ : forall {Γ σ Δ M i},
    {{ Γ s σ : Δ }} ->
    {{ Γ M : Type@i }} ->
    {{ Γ #0[σ,,M] M : Type@i }}.
Proof with mautosolve 4.
  intros.
  eapply wf_exp_eq_conv; mauto 3.
  econstructor...
Qed.

Lemma exp_eq_var_1_sub_typ : forall {Γ σ Δ A i M j},
    {{ Γ s σ : Δ }} ->
    {{ Δ A : Type@i }} ->
    {{ Γ M : A[σ] }} ->
    {{ #0 : Type@j[Wk] Δ }} ->
    {{ Γ #1[σ,,M] #0[σ] : Type@j }}.
Proof with mautosolve 4.
  inversion 4 as [? Δ'|]; subst.
  assert {{ Δ' }} by mauto 4.
  assert {{ Δ', Type@j s Wk : Δ' }} by mauto 4.
  eapply wf_exp_eq_conv...
Qed.

#[export]
Hint Resolve exp_eq_var_0_sub_typ exp_eq_var_1_sub_typ : mctt.
#[export]
Hint Rewrite -> @exp_eq_var_0_sub_typ @exp_eq_var_1_sub_typ : mctt.

Lemma exp_eq_var_0_weaken_typ : forall {Γ A i},
    {{ Γ, A }} ->
    {{ #0 : Type@i[Wk] Γ }} ->
    {{ Γ, A #0[Wk] #1 : Type@i }}.
Proof with mautosolve 3.
  inversion_clear 1.
  inversion 1 as [? Γ'|]; subst.
  assert {{ Γ' }} by mauto.
  assert {{ Γ', Type@i s Wk : Γ' }} by mauto 4.
  assert {{ Γ', Type@i, A s Wk : Γ', Type@i }} by mauto 4.
  eapply wf_exp_eq_conv...
Qed.

#[export]
Hint Resolve exp_eq_var_0_weaken_typ : mctt.

Lemma sub_extend_typ : forall {Γ σ Δ M i},
    {{ Γ s σ : Δ }} ->
    {{ Γ M : Type@i }} ->
    {{ Γ s σ,,M : Δ, Type@i }}.
Proof with mautosolve 4.
  intros.
  econstructor...
Qed.

#[export]
Hint Resolve sub_extend_typ : mctt.

Lemma sub_eq_extend_cong_typ : forall {Γ σ σ' Δ M M' i},
    {{ Γ s σ : Δ }} ->
    {{ Γ s σ σ' : Δ }} ->
    {{ Γ M M' : Type@i }} ->
    {{ Γ s σ,,M σ',,M' : Δ, Type@i }}.
Proof with mautosolve 4.
  intros.
  econstructor; mauto 3.
  eapply wf_exp_eq_conv...
Qed.

Lemma sub_eq_extend_compose_typ : forall {Γ τ Γ' σ Γ'' A i M j},
    {{ Γ' s σ : Γ'' }} ->
    {{ Γ'' A : Type@i }} ->
    {{ Γ' M : Type@j }} ->
    {{ Γ s τ : Γ' }} ->
    {{ Γ s (σ,,M) τ (σ τ),,M[τ] : Γ'', Type@j }}.
Proof with mautosolve 4.
  intros.
  econstructor...
Qed.

Lemma sub_eq_p_extend_typ : forall {Γ σ Γ' M i},
    {{ Γ' s σ : Γ }} ->
    {{ Γ' M : Type@i }} ->
    {{ Γ' s Wk (σ,,M) σ : Γ }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ Type@i : Type@(S i) }} by mauto.
  econstructor; mauto 3.
Qed.

#[export]
Hint Resolve sub_eq_extend_cong_typ sub_eq_extend_compose_typ sub_eq_p_extend_typ : mctt.

Lemma sub_eq_wk_var0_id : forall {Γ A i},
    {{ Γ A : Type@i }} ->
    {{ Γ, A s Wk,,#0 Id : Γ, A }}.
Proof with mautosolve 4.
  intros * ?.
  assert {{ Γ, A }} by mauto 3.
  assert {{ Γ, A s (WkId),,#0[Id] Id : Γ, A }} by mauto.
  assert {{ Γ, A s Wk WkId : Γ }} by mauto.
  enough {{ Γ, A #0 #0[Id] : A[Wk] }}...
Qed.

#[export]
Hint Resolve sub_eq_wk_var0_id : mctt.
#[export]
Hint Rewrite -> @sub_eq_wk_var0_id using mauto 4 : mctt.

Lemma exp_eq_sub_sub_compose_cong_typ : forall {Γ Δ Δ' Ψ σ τ σ' τ' A i},
    {{ Ψ A : Type@i }} ->
    {{ Δ s σ : Ψ }} ->
    {{ Δ' s σ' : Ψ }} ->
    {{ Γ s τ : Δ }} ->
    {{ Γ s τ' : Δ' }} ->
    {{ Γ s στ σ'τ' : Ψ }} ->
    {{ Γ A[σ][τ] A[σ'][τ'] : Type@i }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ A[σ][τ] A[στ] : Type@i }} by mauto.
  assert {{ Γ A[στ] A[σ'τ'] : Type@i }} by mauto.
  enough {{ Γ A[σ'τ'] A[σ'][τ'] : Type@i }}...
Qed.

#[export]
Hint Resolve exp_eq_sub_sub_compose_cong_typ : mctt.

Lemmas for exp of {{{ }}}


Lemma exp_eq_sub_cong_nat1 : forall {Δ Γ M M' σ},
    {{ Δ M M' : }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ M[σ] M'[σ] : }}.
Proof with mautosolve 3.
  intros.
  eapply wf_exp_eq_conv...
Qed.

Lemma exp_eq_sub_cong_nat2 : forall {Δ Γ M σ τ},
    {{ Δ M : }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ s σ τ : Δ }} ->
    {{ Γ M[σ] M[τ] : }}.
Proof with mautosolve.
  intros.
  eapply wf_exp_eq_conv...
Qed.

Lemma exp_eq_sub_compose_nat : forall {Ψ Δ Γ M σ τ},
    {{ Ψ M : }} ->
    {{ Δ s σ : Ψ }} ->
    {{ Γ s τ : Δ }} ->
    {{ Γ M[σ][τ] M[στ] : }}.
Proof with mautosolve 4.
  intros.
  eapply wf_exp_eq_conv...
Qed.

#[export]
Hint Resolve exp_sub_nat exp_eq_sub_cong_nat1 exp_eq_sub_cong_nat2 exp_eq_sub_compose_nat : mctt.

Lemma exp_eq_nat_sub_sub : forall {Γ Δ Ψ σ τ},
    {{ Δ s σ : Ψ }} ->
    {{ Γ s τ : Δ }} ->
    {{ Γ [σ][τ] : Type@0 }}.
Proof. mauto. Qed.

#[export]
Hint Resolve exp_eq_nat_sub_sub : mctt.

Lemma exp_eq_nat_sub_sub_to_nat_sub : forall {Γ Δ Ψ Ψ' σ τ σ'},
    {{ Δ s σ : Ψ }} ->
    {{ Γ s τ : Δ }} ->
    {{ Γ s σ' : Ψ' }} ->
    {{ Γ [σ][τ] [σ'] : Type@0 }}.
Proof. mauto. Qed.

#[export]
Hint Resolve exp_eq_nat_sub_sub_to_nat_sub : mctt.

Lemma vlookup_0_nat : forall {Γ},
    {{ Γ }} ->
    {{ Γ, # 0 : }}.
Proof with mautosolve 4.
  intros.
  eapply wf_conv; mauto 4.
  econstructor...
Qed.

Lemma vlookup_1_nat : forall {Γ A i},
    {{ Γ, A : Type@i }} ->
    {{ Γ, , A # 1 : }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ, s Wk : Γ }} by mauto 4.
  assert {{ Γ, , A s Wk : Γ, }} by mauto 4.
  eapply wf_conv...
Qed.

#[export]
Hint Resolve vlookup_0_nat vlookup_1_nat : mctt.

Lemma exp_sub_nat_helper : forall {Γ σ Δ M},
    {{ Γ s σ : Δ }} ->
    {{ Γ M : }} ->
    {{ Γ M : [σ] }}.
Proof.
  intros.
  do 2 (econstructor; mauto 4).
Qed.

#[export]
Hint Resolve exp_sub_nat_helper : mctt.

Lemma exp_eq_var_0_sub_nat : forall {Γ σ Δ M},
    {{ Γ s σ : Δ }} ->
    {{ Γ M : }} ->
    {{ Γ #0[σ,,M] M : }}.
Proof with mautosolve 3.
  intros.
  eapply wf_exp_eq_conv; mauto 3.
  econstructor...
Qed.

Lemma exp_eq_var_1_sub_nat : forall {Γ σ Δ A i M},
    {{ Γ s σ : Δ }} ->
    {{ Δ A : Type@i }} ->
    {{ Γ M : A[σ] }} ->
    {{ #0 : [Wk] Δ }} ->
    {{ Γ #1[σ,,M] #0[σ] : }}.
Proof with mautosolve 4.
  inversion 4 as [? Δ'|]; subst.
  assert {{ Γ #1[σ,, M] #0[σ] : [Wk][σ] }} by mauto 4.
  assert {{ Γ [Wk][σ] : Type@0 }}...
Qed.

#[export]
Hint Resolve exp_eq_var_0_sub_nat exp_eq_var_1_sub_nat : mctt.

Lemma exp_eq_var_0_weaken_nat : forall {Γ A},
    {{ Γ, A }} ->
    {{ #0 : [Wk] Γ }} ->
    {{ Γ, A #0[Wk] #1 : }}.
Proof with mautosolve 4.
  inversion 1; subst.
  inversion 1 as [? Γ'|]; subst.
  assert {{ Γ', , A #0[Wk] # 1 : [Wk][Wk] }} by mauto 4.
  assert {{ Γ', , A [Wk][Wk] : Type@0 }}...
Qed.

#[export]
Hint Resolve exp_eq_var_0_weaken_nat : mctt.

Lemma sub_extend_nat : forall {Γ σ Δ M},
    {{ Γ s σ : Δ }} ->
    {{ Γ M : }} ->
    {{ Γ s σ,,M : Δ , }}.
Proof with mautosolve 3.
  intros.
  econstructor...
Qed.

#[export]
Hint Resolve sub_extend_nat : mctt.

Lemma sub_eq_extend_cong_nat : forall {Γ σ σ' Δ M M'},
    {{ Γ s σ : Δ }} ->
    {{ Γ s σ σ' : Δ }} ->
    {{ Γ M M' : }} ->
    {{ Γ s σ,,M σ',,M' : Δ , }}.
Proof with mautosolve 4.
  intros.
  econstructor; mauto 3.
  eapply wf_exp_eq_conv...
Qed.

Lemma sub_eq_extend_compose_nat : forall {Γ τ Γ' σ Γ'' M},
    {{ Γ' s σ : Γ'' }} ->
    {{ Γ' M : }} ->
    {{ Γ s τ : Γ' }} ->
    {{ Γ s (σ,,M) τ (σ τ),,M[τ] : Γ'' , }}.
Proof with mautosolve 3.
  intros.
  econstructor...
Qed.

Lemma sub_eq_p_extend_nat : forall {Γ σ Γ' M},
    {{ Γ' s σ : Γ }} ->
    {{ Γ' M : }} ->
    {{ Γ' s Wk (σ,,M) σ : Γ }}.
Proof with mautosolve 3.
  intros.
  assert {{ Γ : Type@0 }} by mauto.
  econstructor...
Qed.

#[export]
Hint Resolve sub_eq_extend_cong_nat sub_eq_extend_compose_nat sub_eq_p_extend_nat : mctt.

Lemma exp_eq_sub_sub_compose_cong_nat : forall {Γ Δ Δ' Ψ σ τ σ' τ' M},
    {{ Ψ M : }} ->
    {{ Δ s σ : Ψ }} ->
    {{ Δ' s σ' : Ψ }} ->
    {{ Γ s τ : Δ }} ->
    {{ Γ s τ' : Δ' }} ->
    {{ Γ s στ σ'τ' : Ψ }} ->
    {{ Γ M[σ][τ] M[σ'][τ'] : }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ M[σ][τ] M[στ] : }} by mauto.
  assert {{ Γ M[στ] M[σ'τ'] : }} by mauto.
  enough {{ Γ M[σ'τ'] M[σ'][τ'] : }}...
Qed.

#[export]
Hint Resolve exp_eq_sub_sub_compose_cong_nat : mctt.

Other Tedious Lemmas


Lemma exp_eq_sub_sub_compose_cong : forall {Γ Δ Δ' Ψ σ τ σ' τ' M A i},
    {{ Ψ A : Type@i }} ->
    {{ Ψ M : A }} ->
    {{ Δ s σ : Ψ }} ->
    {{ Δ' s σ' : Ψ }} ->
    {{ Γ s τ : Δ }} ->
    {{ Γ s τ' : Δ' }} ->
    {{ Γ s στ σ'τ' : Ψ }} ->
    {{ Γ M[σ][τ] M[σ'][τ'] : A[στ] }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ A[στ] A[σ'τ'] : Type@i }} by mauto.
  assert {{ Γ M[σ][τ] M[στ] : A[στ] }} by mauto.
  assert {{ Γ M[στ] M[σ'τ'] : A[στ] }} by mauto.
  assert {{ Γ M[σ'τ'] M[σ'][τ'] : A[σ'τ'] }} by mauto.
  enough {{ Γ M[σ'τ'] M[σ'][τ'] : A[στ] }} by mauto.
  eapply wf_exp_eq_conv...
Qed.

#[export]
Hint Resolve exp_eq_sub_sub_compose_cong : mctt.

Lemma ctxeq_ctx_lookup : forall {Γ Δ A x},
    {{ Γ Δ }} ->
    {{ #x : A Γ }} ->
    exists B i,
      {{ #x : B Δ }} /\
        {{ Γ A B : Type@i }} /\
        {{ Δ A B : Type@i }}.
Proof with mautosolve.
  intros * HΓΔ Hx; gen Δ.
  induction Hx as [|* ? IHHx]; inversion_clear 1 as [|? ? ? ? ? HΓΔ'];
    [|specialize (IHHx _ HΓΔ')]; destruct_conjs; repeat eexists...
Qed.

#[export]
Hint Resolve ctxeq_ctx_lookup : mctt.

Lemma sub_id_on_typ : forall {Γ M A i},
    {{ Γ A : Type@i }} ->
    {{ Γ M : A }} ->
    {{ Γ M : A[Id] }}.
Proof with mautosolve 4.
  intros.
  eapply wf_conv...
Qed.

#[export]
Hint Resolve sub_id_on_typ : mctt.

Lemma sub_id_extend : forall {Γ M A i},
    {{ Γ A : Type@i }} ->
    {{ Γ M : A }} ->
    {{ Γ s Id,,M : Γ, A }}.
Proof with mautosolve 4.
  intros.
  econstructor...
Qed.

#[export]
Hint Resolve sub_id_extend : mctt.

Lemma sub_eq_p_id_extend : forall {Γ M A i},
    {{ Γ A : Type@i }} ->
    {{ Γ M : A }} ->
    {{ Γ s Wk (Id,,M) Id : Γ }}.
Proof with mautosolve 4.
  intros.
  econstructor...
Qed.

#[export]
Hint Resolve sub_eq_p_id_extend : mctt.
#[export]
Hint Rewrite -> @sub_eq_p_id_extend using mauto 4 : mctt.

Lemma sub_q : forall {Γ A i σ Δ},
    {{ Δ A : Type@i }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ, A[σ] s q σ : Δ, A }}.
Proof with mautosolve 3.
  intros.
  assert {{ Γ A[σ] : Type@i }} by mauto 4.
  assert {{ Γ, A[σ] s Wk : Γ }} by mauto 4.
  assert {{ Γ, A[σ] # 0 : A[σ][Wk] }} by mauto 4.
  econstructor; mauto 3.
  eapply wf_conv...
Qed.

Lemma sub_q_typ : forall {Γ σ Δ i},
    {{ Γ s σ : Δ }} ->
    {{ Γ, Type@i s q σ : Δ, Type@i }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ }} by mauto 3.
  assert {{ Γ, Type@i s Wk : Γ }} by mauto 4.
  assert {{ Γ, Type@i s σ Wk : Δ }} by mauto 4.
  assert {{ Γ, Type@i # 0 : Type@i[Wk] }} by mauto 4.
  assert {{ Γ, Type@i # 0 : Type@i }}...
Qed.

Lemma sub_q_nat : forall {Γ σ Δ},
    {{ Γ s σ : Δ }} ->
    {{ Γ, s q σ : Δ, }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ }} by mauto 3.
  assert {{ Γ, s Wk : Γ }} by mauto 4.
  assert {{ Γ, s σ Wk : Δ }} by mauto 4.
  assert {{ Γ, # 0 : [Wk] }} by mauto 4.
  assert {{ Γ, # 0 : }}...
Qed.

#[export]
Hint Resolve sub_q sub_q_typ sub_q_nat : mctt.

Lemma exp_eq_var_1_sub_q_sigma_nat : forall {Γ A i σ Δ},
    {{ Δ, A : Type@i }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ, , A[q σ] #1[q (q σ)] #1 : }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ, s q σ : Δ, }} by mauto.
  assert {{ Γ, , A[q σ] }} by mauto 3.
  assert {{ Δ, #0 : }} by mauto.
  assert {{ Γ, , A[q σ] #0 : A[q σ][Wk] }} by mauto 4.
  assert {{ Γ, , A[q σ] A[q σWk] A[q σ][Wk] : Type@i }} by mauto 4.
  assert {{ Γ, , A[q σ] #0 : A[q σWk] }} by (eapply wf_conv; mauto 4).
  assert {{ Γ, , A[q σ] s q σWk : Δ, }} by mauto 4.
  assert {{ Γ, , A[q σ] #1[q (q σ)] #0[q σWk] : }} by mauto 4.
  assert {{ Γ, , A[q σ] #0[q σWk] #0[q σ][Wk] : }} by mauto 4.
  assert {{ Γ, s σWk : Δ }} by mauto 4.
  assert {{ Γ, #0 : [σWk] }} by (eapply wf_conv; mauto 4).
  assert {{ Γ, #0[q σ] #0 : }} by mauto 4.
  assert {{ Γ, , A[q σ] #0[q σ][Wk] #0[Wk] : }} by mauto 4.
  econstructor...
Qed.

#[export]
Hint Resolve exp_eq_var_1_sub_q_sigma_nat : mctt.

Lemma sub_id_extend_zero : forall {Γ},
    {{ Γ }} ->
    {{ Γ s Id,,zero : Γ, }}.
Proof. mauto. Qed.

Lemma sub_weak_compose_weak_extend_succ_var_1 : forall {Γ A i},
    {{ Γ, A : Type@i }} ->
    {{ Γ, , A s (Wk Wk),,succ #1 : Γ, }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ, , A s Wk : Γ, }} by mauto 4.
  enough {{ Γ, , A s Wk Wk : Γ }}...
Qed.

Lemma sub_eq_id_extend_nat_compose_sigma : forall {Γ M σ Δ},
    {{ Γ s σ : Δ }} ->
    {{ Δ M : }} ->
    {{ Γ s (Id,,M) σ σ,,M[σ] : Δ, }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ s (Id,,M) σ (Id σ),,M[σ] : Δ, }} by mauto 4.
  enough {{ Γ s (Id σ),,M[σ] σ,,M[σ] : Δ, }} by mauto 4.
  eapply sub_eq_extend_cong_nat...
Qed.

Lemma sub_eq_id_extend_compose_sigma : forall {Γ M A σ Δ i},
    {{ Γ s σ : Δ }} ->
    {{ Δ A : Type@i }} ->
    {{ Δ M : A }} ->
    {{ Γ s (Id,,M) σ σ,,M[σ] : Δ, A }}.
Proof with mautosolve 4.
  intros.
  assert {{ Δ s Id : Δ }} by mauto.
  assert {{ Δ M : A[Id] }} by mauto.
  assert {{ Γ s (Id,,M) σ (Id σ),,M[σ] : Δ, A }} by mauto 3.
  assert {{ Γ M[σ] : A[Id][σ] }} by mauto.
  assert {{ Γ A[Id][σ] A[Idσ] : Type@i }} by mauto.
  assert {{ Γ M[σ] : A[Idσ] }} by mauto 4.
  enough {{ Γ M[σ] M[σ] : A[Idσ] }}...
Qed.

#[export]
Hint Resolve sub_id_extend_zero sub_weak_compose_weak_extend_succ_var_1 sub_eq_id_extend_nat_compose_sigma sub_eq_id_extend_compose_sigma : mctt.

Lemma sub_eq_sigma_compose_weak_id_extend : forall {Γ M A i σ Δ},
    {{ Γ A : Type@i }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ M : A }} ->
    {{ Γ s (σ Wk) (Id,,M) σ : Δ }}.
Proof with mautosolve.
  intros.
  assert {{ Γ s Id,,M : Γ, A }} by mauto.
  assert {{ Γ s (σ Wk) (Id,,M) σ (Wk (Id,,M)) : Δ }} by mauto 4.
  assert {{ Γ s Wk (Id,,M) Id : Γ }} by mauto.
  enough {{ Γ s σ (Wk (Id,,M)) σ Id : Δ }} by mauto.
  econstructor...
Qed.

#[export]
Hint Resolve sub_eq_sigma_compose_weak_id_extend : mctt.

Lemma sub_eq_q_sigma_id_extend : forall {Γ M A i σ Δ},
    {{ Δ A : Type@i }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ M : A[σ] }} ->
    {{ Γ s q σ (Id,,M) σ,,M : Δ, A }}.
Proof with mautosolve 4.
  intros.
  assert {{ Γ }} by mauto 3.
  assert {{ Γ A[σ] : Type@i }} by mauto.
  assert {{ Γ M : A[σ] }} by mauto.
  assert {{ Γ s Id,,M : Γ, A[σ] }} by mauto.
  assert {{ Γ, A[σ] s Wk : Γ }} by mauto.
  assert {{ Γ, A[σ] #0 : A[σ][Wk] }} by mauto.
  assert {{ Γ, A[σ] #0 : A[σWk] }} by (eapply wf_conv; mauto 3).
  assert {{ Γ s q σ (Id,,M) ((σ Wk) (Id,,M)),,#0[Id,,M] : Δ, A }} by mauto.
  assert {{ Γ s (σ Wk) (Id,,M) σ : Δ }} by mauto.
  assert {{ Γ M : A[σ][Id] }} by mauto 4.
  assert {{ Γ #0[Id,,M] M : A[σ][Id] }} by mauto 3.
  assert {{ Γ #0[Id,,M] M : A[σ] }} by mauto.
  enough {{ Γ #0[Id,,M] M : A[(σ Wk) (Id,,M)] }} by mauto.
  eapply wf_exp_eq_conv...
Qed.

#[export]
Hint Resolve sub_eq_q_sigma_id_extend : mctt.
#[export]
Hint Rewrite -> @sub_eq_q_sigma_id_extend using mauto 4 : mctt.

Lemma sub_eq_p_q_sigma : forall {Γ A i σ Δ},
    {{ Δ A : Type@i }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ, A[σ] s Wk q σ σ Wk : Δ }}.
Proof with mautosolve 3.
  intros.
  assert {{ Γ, A[σ] s Wk : Γ }} by mauto 4.
  assert {{ Γ, A[σ] #0 : A[σ][Wk] }} by mauto 3.
  enough {{ Γ, A[σ] #0 : A[σ Wk] }} by mauto.
  eapply wf_conv...
Qed.

#[export]
Hint Resolve sub_eq_p_q_sigma : mctt.

Lemma sub_eq_p_q_sigma_nat : forall {Γ σ Δ},
    {{ Γ s σ : Δ }} ->
    {{ Γ, s Wk q σ σ Wk : Δ }}.
Proof with mautosolve.
  intros.
  assert {{ Γ, #0 : }}...
Qed.

#[export]
Hint Resolve sub_eq_p_q_sigma_nat : mctt.

Lemma sub_eq_p_p_q_q_sigma_nat : forall {Γ A i σ Δ},
    {{ Δ, A : Type@i }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ, , A[q σ] s Wk (Wk q (q σ)) (σ Wk) Wk : Δ }}.
Proof with mautosolve 3.
  intros.
  assert {{ Γ, A[q σ] : Type@i }} by mauto.
  assert {{ Γ, , A[q σ] }} by mauto 3.
  assert {{ Δ, }} by mauto 3.
  assert {{ Γ, , A[q σ] s Wkq (q σ) q σ Wk : Δ, }} by mauto.
  assert {{ Γ, , A[q σ] s Wk(Wkq (q σ)) Wk (q σ Wk) : Δ }} by mauto 3.
  assert {{ Δ, s Wk : Δ }} by mauto.
  assert {{ Γ, s q σ : Δ, }} by mauto.
  assert {{ Γ, , A[q σ] s Wk (q σ Wk) (Wk q σ) Wk : Δ }} by mauto 4.
  assert {{ Γ, s Wk q σ σ Wk : Δ }} by mauto.
  enough {{ Γ, , A[q σ] s (Wk q σ) Wk (σ Wk) Wk : Δ }}...
Qed.

#[export]
Hint Resolve sub_eq_p_p_q_q_sigma_nat : mctt.

Lemma sub_eq_q_sigma_compose_weak_weak_extend_succ_var_1 : forall {Γ A i σ Δ},
    {{ Δ, A : Type@i }} ->
    {{ Γ s σ : Δ }} ->
    {{ Γ, , A[q σ] s q σ ((Wk Wk),,succ #1) ((Wk Wk),,succ #1) q (q σ) : Δ, }}.
Proof with mautosolve 4.
  intros.
  assert {{ Δ, , A }} by mauto 3.
  assert {{ Γ, }} by mauto 3.
  assert {{ Γ, s Wk : Γ }} by mauto 3.
  assert {{ Γ, s σWk : Δ }} by mauto 3.
  assert {{ Γ, A[q σ] : Type@i }} by mauto 3.
  set (Γ' := {{{ Γ, , A[q σ] }}}).
  set (WkWksucc := {{{ (WkWk),,succ #1 }}}).
  assert {{ Γ' }} by mauto 2.
  assert {{ Γ' s WkWk : Γ }} by mauto 4.
  assert {{ Γ' s WkWksucc : Γ, }} by mauto.
  assert {{ Γ, #0 : }} by mauto.
  assert {{ Γ' s q σWkWksucc ((σWk)WkWksucc),,#0[WkWksucc] : Δ, }} by mautosolve 3.
  assert {{ Γ' #1 : [Wk][Wk] }} by mauto.
  assert {{ Γ' [Wk][Wk] : Type@0 }} by mauto 3.
  assert {{ Γ' #1 : }} by mauto 2.
  assert {{ Γ' succ #1 : }} by mauto.
  assert {{ Γ' s WkWkWksucc : Γ }} by mauto 4.
  assert {{ Γ' s WkWkWksucc WkWk : Γ }} by mauto 4.
  assert {{ Γ s σ σ : Δ }} by mauto.
  assert {{ Γ' s σ(WkWkWksucc) σ(WkWk) : Δ }} by mauto 3.
  assert {{ Γ' s (σWk)WkWksucc σ(WkWk) : Δ }} by mauto 3.
  assert {{ Γ' s σ(WkWk) (σWk)Wk : Δ }} by mauto 4.
  assert {{ Γ' s (σWk)Wk Wk(Wkq (q σ)) : Δ }} by mauto.
  assert {{ Δ, s Wk : Δ }} by mauto 4.
  assert {{ Δ, , A s Wk : Δ, }} by mauto 4.
  assert {{ Δ, , A s WkWk : Δ }} by mauto 4.
  assert {{ Γ' s q (q σ) : Δ, , A }} by mauto.
  assert {{ Γ' s Wk(Wkq (q σ)) (WkWk)q (q σ) : Δ }} by mauto 3.
  assert {{ Γ' s σ(WkWk) (WkWk)q (q σ) : Δ }} by mauto 3.
  assert {{ Γ' #0[WkWksucc] succ #1 : }} by mauto.
  assert {{ Γ' succ #1[q (q σ)] succ #1 : }} by mauto 3.
  assert {{ Δ, , A #1 : }} by mauto 2.
  assert {{ Γ' succ #1 (succ #1)[q (q σ)] : }} by mauto 4.
  assert {{ Γ' #0[WkWksucc] (succ #1)[q (q σ)] : }} by mauto 2.
  assert {{ Γ' s (σWk)WkWksucc : Δ }} by mauto 3.
  assert {{ Γ' s ((σWk)WkWksucc),,#0[WkWksucc] ((WkWk)q (q σ)),,(succ #1)[q (q σ)] : Δ, }} by mauto 3.
  assert {{ Δ, , A #1 : [Wk][Wk] }} by mauto 4.
  assert {{ Δ, , A [Wk][Wk] : Type@0 }} by mauto 3.
  assert {{ Δ, , A succ #1 : }} by mauto.
  enough {{ Γ' s ((WkWk)q (q σ)),,(succ #1)[q (q σ)] WkWksuccq (q σ) : Δ, }}...
Qed.

#[export]
Hint Resolve sub_eq_q_sigma_compose_weak_weak_extend_succ_var_1 : mctt.

Lemmas for wf_subtyp


Fact wf_subtyp_refl : forall {Γ A i},
    {{ Γ A : Type@i }} ->
    {{ Γ A A }}.
Proof. mauto. Qed.

#[export]
Hint Resolve wf_subtyp_refl : mctt.

Lemma wf_subtyp_ge : forall {Γ i j},
    {{ Γ }} ->
    i <= j ->
    {{ Γ Type@i Type@j }}.
Proof.
  induction 2; mauto 4.
Qed.

#[export]
Hint Resolve wf_subtyp_ge : mctt.

Lemma wf_subtyp_sub : forall {Δ A A'},
    {{ Δ A A' }} ->
    forall Γ σ,
    {{ Γ s σ : Δ }} ->
    {{ Γ A[σ] A'[σ] }}.
Proof.
  induction 1; intros; mauto 4.
  - transitivity {{{ Type@i }}}; [econstructor; mauto 4 |].
    transitivity {{{ Type@j }}}; [| econstructor; mauto 4].
    mauto 3.
  - transitivity {{{ Π (A[σ]) (B[q σ]) }}}; [econstructor; mauto |].
    transitivity {{{ Π (A'[σ]) (B'[q σ]) }}}; [ | econstructor; mauto 4].
    eapply wf_subtyp_pi with (i := i); mauto 4.
Qed.

#[export]
Hint Resolve wf_subtyp_sub : mctt.

Lemma wf_subtyp_univ_weaken : forall {Γ i j A},
    {{ Γ Type@i Type@j }} ->
    {{ Γ, A }} ->
    {{ Γ, A Type@i Type@j }}.
Proof.
  intros.
  eapply wf_subtyp_sub with (σ := {{{ Wk }}}) in H.
  - transitivity {{{ Type@i[Wk] }}}; [econstructor; mauto |].
    etransitivity; mauto.
  - mauto.
Qed.

Lemma ctx_sub_ctx_lookup : forall {Γ Δ},
    {{ Δ Γ }} ->
    forall {A x},
      {{ #x : A Γ }} ->
      exists B,
        {{ #x : B Δ }} /\
          {{ Δ B A }}.
Proof with (do 2 eexists; repeat split; mautosolve).
  induction 1; intros * Hx; progressive_inversion.
  dependent destruction Hx.
  - idtac...
  - edestruct IHwf_ctx_sub as [? []]; try eassumption...
Qed.

#[export]
Hint Resolve ctx_sub_ctx_lookup : mctt.

Lemma no_closed_neutral : forall {A} {W : ne},
    ~ {{ W : A }}.
Proof.
  intros * H.
  dependent induction H; destruct W;
    try (simpl in *; congruence);
    autoinjections;
    intuition.
  inversion_by_head ctx_lookup.
Qed.
#[export]
Hint Resolve no_closed_neutral : mctt.