Mctt.Core.Soundness.UniverseCases

From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness Require Import FundamentalTheorem.
From Mctt.Core.Semantic Require Import Realizability.
From Mctt.Core.Soundness Require Import LogicalRelation SubtypingCases TermStructureCases.
Import Domain_Notations.

Lemma glu_rel_exp_of_typ : forall {Γ Sb A i},
    {{ EG Γ glu_ctx_env Sb }} ->
    (forall Δ σ ρ,
        {{ Δ s σ ® ρ Sb }} ->
        {{ Δ A[σ] : Type@i }} /\
          exists a,
            {{ A ρ a }} /\
              {{ Dom a a per_univ i }} /\
              forall P El, {{ DG a glu_univ_elem i P El }} -> {{ Δ A[σ] ® P }}) ->
    {{ Γ A : Type@i }}.
Proof.
  intros * ? Hbody.
  eexists; split; mauto.
  exists (S i).
  intros.
  edestruct Hbody as [? [? [? []]]]; mauto.
Qed.

Lemma glu_rel_exp_typ : forall {Γ i},
    {{ Γ }} ->
    {{ Γ Type@i : Type@(S i) }}.
Proof.
  intros * [].
  eapply glu_rel_exp_of_typ; mauto 3.
  intros.
  assert {{ Δ s σ : Γ }} by mauto 3.
  split; mauto 4.
  eexists; repeat split; mauto.
  intros.
  match_by_head1 glu_univ_elem invert_glu_univ_elem.
  apply_predicate_equivalence.
  cbn.
  mauto 4.
Qed.

#[export]
Hint Resolve glu_rel_exp_typ : mctt.

Lemma glu_rel_exp_clean_inversion2' : forall {i Γ Sb M},
    {{ EG Γ glu_ctx_env Sb }} ->
    {{ Γ M : Type@i }} ->
    glu_rel_exp_clean_inversion2_result (S i) Sb M {{{ Type@i }}}.
Proof.
  intros * ? HM.
  assert {{ Γ Type@i : Type@(S i) }} by mauto 3.
  eapply glu_rel_exp_clean_inversion2 in HM; mauto 3.
Qed.

Ltac invert_glu_rel_exp H ::=
  (unshelve eapply (glu_rel_exp_clean_inversion2' _) in H; shelve_unifiable; [eassumption |];
   unfold glu_rel_exp_clean_inversion2_result in H)
  + (unshelve eapply (glu_rel_exp_clean_inversion2 _ _) in H; shelve_unifiable; [eassumption | eassumption |];
     unfold glu_rel_exp_clean_inversion2_result in H)
  + (unshelve eapply (glu_rel_exp_clean_inversion1 _) in H; shelve_unifiable; [eassumption |];
     destruct H as [])
  + (inversion H; subst).

Lemma glu_rel_exp_sub_typ : forall {Γ σ Δ i A},
    {{ Γ s σ : Δ }} ->
    {{ Δ A : Type@i }} ->
    {{ Γ A[σ] : Type@i }}.
Proof.
  intros.
  assert {{ Γ s σ : Δ }} by mauto 3.
  assert {{ Γ Type@i[σ] Type@i }} by mauto 3.
  assert {{ Γ A[σ] : Type@i[σ] }} by mauto 4.
  mauto 4.
Qed.

#[export]
Hint Resolve glu_rel_exp_sub_typ : mctt.