Mctt.Core.Semantic.Realizability
From Coq Require Import Lia Morphisms_Relations PeanoNat Relation_Definitions.
From Equations Require Import Equations.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Export NbE PER.
Import Domain_Notations.
Lemma per_nat_then_per_top : forall {n m},
{{ Dom n ≈ m ∈ per_nat }} ->
{{ Dom ⇓ ℕ n ≈ ⇓ ℕ m ∈ per_top }}.
Proof with solve [destruct_conjs; eexists; repeat econstructor; eauto].
induction 1; simpl in *; intros s;
try specialize (IHper_nat s);
try specialize (H s)...
Qed.
#[export]
Hint Resolve per_nat_then_per_top : mctt.
Lemma realize_per_univ_elem_gen : forall {i a a' R},
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ Dom a ≈ a' ∈ per_top_typ }}
/\ (forall {c c'}, {{ Dom c ≈ c' ∈ per_bot }} -> {{ Dom ⇑ a c ≈ ⇑ a' c' ∈ R }})
/\ (forall {b b'}, {{ Dom b ≈ b' ∈ R }} -> {{ Dom ⇓ a b ≈ ⇓ a' b' ∈ per_top }}).
Proof with (solve [try (try (eexists; split); econstructor); mauto]).
intros * Hunivelem. simpl in Hunivelem.
induction Hunivelem using per_univ_elem_ind; repeat split; intros;
apply_relation_equivalence; mauto.
- subst; repeat econstructor.
- subst.
eexists.
per_univ_elem_econstructor...
- subst.
destruct_by_head per_univ.
specialize (H2 _ _ _ H0).
destruct_conjs.
intro s.
specialize (H1 s) as [? []]...
- destruct IHHunivelem as [? []].
intro s.
assert {{ Dom ⇑! a s ≈ ⇑! a' s ∈ in_rel }} by eauto using var_per_bot.
destruct_rel_mod_eval.
specialize (H9 (S s)) as [? []].
specialize (H2 s) as [? []]...
- intros c0 c0' equiv_c0_c0'.
destruct_conjs.
destruct_rel_mod_eval.
econstructor; try solve [econstructor; eauto].
enough ({{ Dom c ⇓ a c0 ≈ c' ⇓ a' c0' ∈ per_bot }}) by eauto.
intro s.
specialize (H3 s) as [? []].
specialize (H5 _ _ equiv_c0_c0' s) as [? []]...
- destruct_conjs.
intro s.
assert {{ Dom ⇑! a s ≈ ⇑! a' s ∈ in_rel }} by eauto using var_per_bot.
destruct_rel_mod_eval.
destruct_rel_mod_app.
match goal with
| _: {{ $| ^?f0 & ⇑! a s |↘ ^_ }},
_: {{ $| ^?f0' & ⇑! a' s |↘ ^_ }},
_: {{ ⟦ B ⟧ ρ ↦ ⇑! a s ↘ ^?b0 }},
_: {{ ⟦ B' ⟧ ρ' ↦ ⇑! a' s ↘ ^?b0' }} |- _ =>
rename f0 into f;
rename f0' into f';
rename b0 into b;
rename b0' into b'
end.
assert {{ Dom ⇓ b fa ≈ ⇓ b' f'a' ∈ per_top }} by eauto.
specialize (H2 s) as [? []].
specialize (H16 (S s)) as [? []]...
- intro s.
(on_all_hyp: fun H => destruct (H s) as [? []])...
- intro s.
inversion_clear_by_head per_ne.
(on_all_hyp: fun H => specialize (H s) as [? []])...
Qed.
Corollary per_univ_then_per_top_typ : forall {i a a' R},
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ Dom a ≈ a' ∈ per_top_typ }}.
Proof.
intros * ?%realize_per_univ_elem_gen; firstorder.
Qed.
#[export]
Hint Resolve per_univ_then_per_top_typ : mctt.
Corollary per_bot_then_per_elem : forall {i a a' R c c'},
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ Dom c ≈ c' ∈ per_bot }} -> {{ Dom ⇑ a c ≈ ⇑ a' c' ∈ R }}.
Proof.
intros * ?%realize_per_univ_elem_gen; firstorder.
Qed.
From Equations Require Import Equations.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Export NbE PER.
Import Domain_Notations.
Lemma per_nat_then_per_top : forall {n m},
{{ Dom n ≈ m ∈ per_nat }} ->
{{ Dom ⇓ ℕ n ≈ ⇓ ℕ m ∈ per_top }}.
Proof with solve [destruct_conjs; eexists; repeat econstructor; eauto].
induction 1; simpl in *; intros s;
try specialize (IHper_nat s);
try specialize (H s)...
Qed.
#[export]
Hint Resolve per_nat_then_per_top : mctt.
Lemma realize_per_univ_elem_gen : forall {i a a' R},
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ Dom a ≈ a' ∈ per_top_typ }}
/\ (forall {c c'}, {{ Dom c ≈ c' ∈ per_bot }} -> {{ Dom ⇑ a c ≈ ⇑ a' c' ∈ R }})
/\ (forall {b b'}, {{ Dom b ≈ b' ∈ R }} -> {{ Dom ⇓ a b ≈ ⇓ a' b' ∈ per_top }}).
Proof with (solve [try (try (eexists; split); econstructor); mauto]).
intros * Hunivelem. simpl in Hunivelem.
induction Hunivelem using per_univ_elem_ind; repeat split; intros;
apply_relation_equivalence; mauto.
- subst; repeat econstructor.
- subst.
eexists.
per_univ_elem_econstructor...
- subst.
destruct_by_head per_univ.
specialize (H2 _ _ _ H0).
destruct_conjs.
intro s.
specialize (H1 s) as [? []]...
- destruct IHHunivelem as [? []].
intro s.
assert {{ Dom ⇑! a s ≈ ⇑! a' s ∈ in_rel }} by eauto using var_per_bot.
destruct_rel_mod_eval.
specialize (H9 (S s)) as [? []].
specialize (H2 s) as [? []]...
- intros c0 c0' equiv_c0_c0'.
destruct_conjs.
destruct_rel_mod_eval.
econstructor; try solve [econstructor; eauto].
enough ({{ Dom c ⇓ a c0 ≈ c' ⇓ a' c0' ∈ per_bot }}) by eauto.
intro s.
specialize (H3 s) as [? []].
specialize (H5 _ _ equiv_c0_c0' s) as [? []]...
- destruct_conjs.
intro s.
assert {{ Dom ⇑! a s ≈ ⇑! a' s ∈ in_rel }} by eauto using var_per_bot.
destruct_rel_mod_eval.
destruct_rel_mod_app.
match goal with
| _: {{ $| ^?f0 & ⇑! a s |↘ ^_ }},
_: {{ $| ^?f0' & ⇑! a' s |↘ ^_ }},
_: {{ ⟦ B ⟧ ρ ↦ ⇑! a s ↘ ^?b0 }},
_: {{ ⟦ B' ⟧ ρ' ↦ ⇑! a' s ↘ ^?b0' }} |- _ =>
rename f0 into f;
rename f0' into f';
rename b0 into b;
rename b0' into b'
end.
assert {{ Dom ⇓ b fa ≈ ⇓ b' f'a' ∈ per_top }} by eauto.
specialize (H2 s) as [? []].
specialize (H16 (S s)) as [? []]...
- intro s.
(on_all_hyp: fun H => destruct (H s) as [? []])...
- intro s.
inversion_clear_by_head per_ne.
(on_all_hyp: fun H => specialize (H s) as [? []])...
Qed.
Corollary per_univ_then_per_top_typ : forall {i a a' R},
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ Dom a ≈ a' ∈ per_top_typ }}.
Proof.
intros * ?%realize_per_univ_elem_gen; firstorder.
Qed.
#[export]
Hint Resolve per_univ_then_per_top_typ : mctt.
Corollary per_bot_then_per_elem : forall {i a a' R c c'},
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ Dom c ≈ c' ∈ per_bot }} -> {{ Dom ⇑ a c ≈ ⇑ a' c' ∈ R }}.
Proof.
intros * ?%realize_per_univ_elem_gen; firstorder.
Qed.
We cannot add per_bot_then_per_elem as a hint
because we don't know what "R" is (i.e. the pattern becomes higher-order.)
In fact, Coq complains it cannot add one if we try.
Corollary per_elem_then_per_top : forall {i a a' R b b'},
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ Dom b ≈ b' ∈ R }} -> {{ Dom ⇓ a b ≈ ⇓ a' b' ∈ per_top }}.
Proof.
intros * ?%realize_per_univ_elem_gen; firstorder.
Qed.
#[export]
Hint Resolve per_elem_then_per_top : mctt.
Lemma per_ctx_then_per_env_initial_env : forall {Γ Γ' env_rel},
{{ EF Γ ≈ Γ' ∈ per_ctx_env ↘ env_rel }} ->
exists ρ ρ', initial_env Γ ρ /\ initial_env Γ' ρ' /\ {{ Dom ρ ≈ ρ' ∈ env_rel }}.
Proof.
induction 1.
- do 2 eexists; intuition.
- destruct_conjs.
(on_all_hyp: destruct_rel_by_assumption tail_rel).
do 2 eexists; repeat split; only 1-2: econstructor; eauto.
apply_relation_equivalence.
eexists.
eapply per_bot_then_per_elem; eauto.
erewrite per_ctx_respects_length; mauto.
eexists; eauto.
Qed.
Lemma var_per_elem : forall {a b i R} n,
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ Dom ⇑! a n ≈ ⇑! b n ∈ R }}.
Proof.
intros.
eapply per_bot_then_per_elem; mauto.
Qed.