Mctt.Algorithmic.Typing.Definitions
From Mctt.Algorithmic.Subtyping Require Export Definitions.
From Mctt.Core Require Import Base.
Import Domain_Notations.
Reserved Notation "Γ '⊢a' M ⟹ A" (in custom judg at level 80, Γ custom exp, M custom exp, A custom nf).
Reserved Notation "Γ '⊢a' M ⟸ A" (in custom judg at level 80, Γ custom exp, M custom exp, A custom exp).
Generalizable All Variables.
Inductive alg_type_check : ctx -> typ -> exp -> Prop :=
| atc_ati :
`( {{ Γ ⊢a M ⟹ A }} ->
{{ Γ ⊢a A ⊆ B }} ->
{{ Γ ⊢a M ⟸ B }} )
where "Γ '⊢a' M ⟸ A" := (alg_type_check Γ A M) (in custom judg) : type_scope
with alg_type_infer : ctx -> nf -> exp -> Prop :=
| ati_typ :
`( {{ Γ ⊢a Type@i ⟹ Type@(S i) }} )
| ati_nat :
`( {{ Γ ⊢a ℕ ⟹ Type@0 }} )
| ati_zero :
`( {{ Γ ⊢a zero ⟹ ℕ }} )
| ati_succ :
`( {{ Γ ⊢a M ⟸ ℕ }} ->
{{ Γ ⊢a succ M ⟹ ℕ }} )
| ati_natrec :
`( {{ Γ, ℕ ⊢a A ⟹ Type@i }} ->
{{ Γ ⊢a MZ ⟸ A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊢a MS ⟸ A[Wk∘Wk,,succ #1] }} ->
{{ Γ ⊢a M ⟸ ℕ }} ->
nbe_ty Γ {{{ A[Id,,M] }}} B ->
{{ Γ ⊢a rec M return A | zero -> MZ | succ -> MS end ⟹ B }} )
| ati_pi :
`( {{ Γ ⊢a A ⟹ Type@i }} ->
{{ Γ, A ⊢a B ⟹ Type@j }} ->
{{ Γ ⊢a Π A B ⟹ Type@(max i j) }} )
| ati_fn :
`( {{ Γ ⊢a A ⟹ Type@i }} ->
{{ Γ, A ⊢a M ⟹ B }} ->
nbe_ty Γ A C ->
{{ Γ ⊢a λ A M ⟹ Π C B }} )
| ati_app :
`( {{ Γ ⊢a M ⟹ Π A B }} ->
{{ Γ ⊢a N ⟸ A }} ->
nbe_ty Γ {{{ B[Id,,N] }}} C ->
{{ Γ ⊢a M N ⟹ C }} )
| ati_vlookup :
`( {{ #x : A ∈ Γ }} ->
nbe_ty Γ A B ->
{{ Γ ⊢a #x ⟹ B }} )
where "Γ '⊢a' M ⟹ A" := (alg_type_infer Γ A M) (in custom judg) : type_scope.
#[export]
Hint Constructors alg_type_check alg_type_infer : mctt.
Scheme alg_type_check_mut_ind := Induction for alg_type_check Sort Prop
with alg_type_infer_mut_ind := Induction for alg_type_infer Sort Prop.
Combined Scheme alg_type_mut_ind from
alg_type_check_mut_ind,
alg_type_infer_mut_ind.
From Mctt.Core Require Import Base.
Import Domain_Notations.
Reserved Notation "Γ '⊢a' M ⟹ A" (in custom judg at level 80, Γ custom exp, M custom exp, A custom nf).
Reserved Notation "Γ '⊢a' M ⟸ A" (in custom judg at level 80, Γ custom exp, M custom exp, A custom exp).
Generalizable All Variables.
Inductive alg_type_check : ctx -> typ -> exp -> Prop :=
| atc_ati :
`( {{ Γ ⊢a M ⟹ A }} ->
{{ Γ ⊢a A ⊆ B }} ->
{{ Γ ⊢a M ⟸ B }} )
where "Γ '⊢a' M ⟸ A" := (alg_type_check Γ A M) (in custom judg) : type_scope
with alg_type_infer : ctx -> nf -> exp -> Prop :=
| ati_typ :
`( {{ Γ ⊢a Type@i ⟹ Type@(S i) }} )
| ati_nat :
`( {{ Γ ⊢a ℕ ⟹ Type@0 }} )
| ati_zero :
`( {{ Γ ⊢a zero ⟹ ℕ }} )
| ati_succ :
`( {{ Γ ⊢a M ⟸ ℕ }} ->
{{ Γ ⊢a succ M ⟹ ℕ }} )
| ati_natrec :
`( {{ Γ, ℕ ⊢a A ⟹ Type@i }} ->
{{ Γ ⊢a MZ ⟸ A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊢a MS ⟸ A[Wk∘Wk,,succ #1] }} ->
{{ Γ ⊢a M ⟸ ℕ }} ->
nbe_ty Γ {{{ A[Id,,M] }}} B ->
{{ Γ ⊢a rec M return A | zero -> MZ | succ -> MS end ⟹ B }} )
| ati_pi :
`( {{ Γ ⊢a A ⟹ Type@i }} ->
{{ Γ, A ⊢a B ⟹ Type@j }} ->
{{ Γ ⊢a Π A B ⟹ Type@(max i j) }} )
| ati_fn :
`( {{ Γ ⊢a A ⟹ Type@i }} ->
{{ Γ, A ⊢a M ⟹ B }} ->
nbe_ty Γ A C ->
{{ Γ ⊢a λ A M ⟹ Π C B }} )
| ati_app :
`( {{ Γ ⊢a M ⟹ Π A B }} ->
{{ Γ ⊢a N ⟸ A }} ->
nbe_ty Γ {{{ B[Id,,N] }}} C ->
{{ Γ ⊢a M N ⟹ C }} )
| ati_vlookup :
`( {{ #x : A ∈ Γ }} ->
nbe_ty Γ A B ->
{{ Γ ⊢a #x ⟹ B }} )
where "Γ '⊢a' M ⟹ A" := (alg_type_infer Γ A M) (in custom judg) : type_scope.
#[export]
Hint Constructors alg_type_check alg_type_infer : mctt.
Scheme alg_type_check_mut_ind := Induction for alg_type_check Sort Prop
with alg_type_infer_mut_ind := Induction for alg_type_infer Sort Prop.
Combined Scheme alg_type_mut_ind from
alg_type_check_mut_ind,
alg_type_infer_mut_ind.