Mctt.Core.Completeness.FunctionCases
From Coq Require Import Morphisms_Relations Relation_Definitions.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness Require Import LogicalRelation TermStructureCases UniverseCases.
Import Domain_Notations.
Lemma rel_exp_of_pi_inversion : forall {Γ M M' A B},
{{ Γ ⊨ M ≈ M' : Π A B }} ->
exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}) i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists in_rel out_rel,
rel_typ i A ρ A ρ' in_rel /\
(forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_typ i B d{{{ ρ ↦ c }}} B d{{{ ρ' ↦ c' }}} (out_rel c c' equiv_c_c')) /\
rel_exp M ρ M' ρ'
(fun f f' : domain => forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app f c f' c' (out_rel c c' equiv_c_c')).
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
do 2 eexists; repeat split; mauto.
Qed.
Lemma rel_exp_of_pi : forall {Γ M M' A B},
(exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}) i j,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists in_rel out_rel,
rel_typ i A ρ A ρ' in_rel /\
(forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_typ j B d{{{ ρ ↦ c }}} B d{{{ ρ' ↦ c' }}} (out_rel c c' equiv_c_c')) /\
rel_exp M ρ M' ρ'
(fun f f' : domain => forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app f c f' c' (out_rel c c' equiv_c_c'))) ->
{{ Γ ⊨ M ≈ M' : Π A B }}.
Proof.
intros * [env_relΓ [? [i [j]]]].
destruct_conjs.
eexists_rel_exp_with (max i j).
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
rename x0 into in_rel.
destruct_by_head rel_typ.
destruct_by_head rel_exp.
eexists; split; econstructor; mauto.
- per_univ_elem_econstructor; eauto using per_univ_elem_cumu_max_left.
+ intros.
(on_all_hyp: destruct_rel_by_assumption in_rel).
econstructor; eauto using per_univ_elem_cumu_max_right.
+ apply Equivalence_Reflexive.
- mauto.
Qed.
Ltac eexists_rel_exp_of_pi :=
apply rel_exp_of_pi;
eexists_rel_exp;
eexists.
#[local]
Ltac extract_output_info_with ρ c ρ' c' env_rel :=
let Hequiv := fresh "equiv" in
(assert (Hequiv : {{ Dom ρ ↦ c ≈ ρ' ↦ c' ∈ env_rel }}) by (apply_relation_equivalence; mauto 4);
apply_relation_equivalence;
(on_all_hyp: fun H => destruct (H _ _ Hequiv));
destruct_conjs;
destruct_by_head rel_typ;
destruct_by_head rel_exp).
Lemma rel_exp_pi_core : forall {i o B o' B' R out_rel},
(forall c c',
R c c' ->
rel_exp B d{{{ o ↦ c }}} B' d{{{ o' ↦ c' }}} (per_univ i)) ->
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness Require Import LogicalRelation TermStructureCases UniverseCases.
Import Domain_Notations.
Lemma rel_exp_of_pi_inversion : forall {Γ M M' A B},
{{ Γ ⊨ M ≈ M' : Π A B }} ->
exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}) i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists in_rel out_rel,
rel_typ i A ρ A ρ' in_rel /\
(forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_typ i B d{{{ ρ ↦ c }}} B d{{{ ρ' ↦ c' }}} (out_rel c c' equiv_c_c')) /\
rel_exp M ρ M' ρ'
(fun f f' : domain => forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app f c f' c' (out_rel c c' equiv_c_c')).
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
do 2 eexists; repeat split; mauto.
Qed.
Lemma rel_exp_of_pi : forall {Γ M M' A B},
(exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}) i j,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists in_rel out_rel,
rel_typ i A ρ A ρ' in_rel /\
(forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_typ j B d{{{ ρ ↦ c }}} B d{{{ ρ' ↦ c' }}} (out_rel c c' equiv_c_c')) /\
rel_exp M ρ M' ρ'
(fun f f' : domain => forall (c c' : domain) (equiv_c_c' : in_rel c c'), rel_mod_app f c f' c' (out_rel c c' equiv_c_c'))) ->
{{ Γ ⊨ M ≈ M' : Π A B }}.
Proof.
intros * [env_relΓ [? [i [j]]]].
destruct_conjs.
eexists_rel_exp_with (max i j).
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
rename x0 into in_rel.
destruct_by_head rel_typ.
destruct_by_head rel_exp.
eexists; split; econstructor; mauto.
- per_univ_elem_econstructor; eauto using per_univ_elem_cumu_max_left.
+ intros.
(on_all_hyp: destruct_rel_by_assumption in_rel).
econstructor; eauto using per_univ_elem_cumu_max_right.
+ apply Equivalence_Reflexive.
- mauto.
Qed.
Ltac eexists_rel_exp_of_pi :=
apply rel_exp_of_pi;
eexists_rel_exp;
eexists.
#[local]
Ltac extract_output_info_with ρ c ρ' c' env_rel :=
let Hequiv := fresh "equiv" in
(assert (Hequiv : {{ Dom ρ ↦ c ≈ ρ' ↦ c' ∈ env_rel }}) by (apply_relation_equivalence; mauto 4);
apply_relation_equivalence;
(on_all_hyp: fun H => destruct (H _ _ Hequiv));
destruct_conjs;
destruct_by_head rel_typ;
destruct_by_head rel_exp).
Lemma rel_exp_pi_core : forall {i o B o' B' R out_rel},
(forall c c',
R c c' ->
rel_exp B d{{{ o ↦ c }}} B' d{{{ o' ↦ c' }}} (per_univ i)) ->
We use the next equality to make unification on `out_rel` works
(out_rel = fun c c' (equiv_c_c' : R c c') m m' =>
forall R',
rel_typ i B d{{{ o ↦ c }}} B' d{{{ o' ↦ c' }}} R' ->
R' m m') ->
(forall c c' (equiv_c_c' : R c c'), rel_typ i B d{{{ o ↦ c }}} B' d{{{ o' ↦ c' }}} (out_rel c c' equiv_c_c')).
Proof with intuition.
intros.
subst.
(on_all_hyp: destruct_rel_by_assumption R).
econstructor; mauto.
destruct_by_head per_univ.
apply -> per_univ_elem_morphism_iff; eauto.
split; intros; destruct_by_head rel_typ; handle_per_univ_elem_irrel...
exvar (relation domain) ltac:(fun R => assert (rel_typ i B d{{{ o ↦ c }}} B' d{{{ o' ↦ c' }}} R) by mauto).
intuition.
Qed.
Lemma rel_exp_pi_cong : forall {i Γ A A' B B'},
{{ Γ ⊨ A ≈ A' : Type@i }} ->
{{ Γ , A ⊨ B ≈ B' : Type@i }} ->
{{ Γ ⊨ Π A B ≈ Π A' B' : Type@i }}.
Proof with mautosolve.
intros * [env_relΓ]%rel_exp_of_typ_inversion [env_relΓA]%rel_exp_of_typ_inversion.
destruct_conjs.
pose env_relΓA.
match_by_head (per_ctx_env env_relΓA) invert_per_ctx_env.
eexists_rel_exp_of_typ.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head per_univ.
handle_per_univ_elem_irrel.
econstructor; mauto.
eexists.
per_univ_elem_econstructor; eauto.
- intros.
eapply rel_exp_pi_core; eauto.
reflexivity.
- solve_refl.
Qed.
#[export]
Hint Resolve rel_exp_pi_cong : mctt.
Lemma rel_exp_pi_sub : forall {i Γ σ Δ A B},
{{ Γ ⊨s σ : Δ }} ->
{{ Δ ⊨ A : Type@i }} ->
{{ Δ , A ⊨ B : Type@i }} ->
{{ Γ ⊨ (Π A B)[σ] ≈ Π (A[σ]) (B[q σ]) : Type@i }}.
Proof with mautosolve.
intros * [env_relΓ] [env_relΔ]%rel_exp_of_typ_inversion [env_relΔA]%rel_exp_of_typ_inversion.
destruct_conjs.
pose env_relΔ.
pose env_relΔA.
match_by_head (per_ctx_env env_relΔA) invert_per_ctx_env.
handle_per_ctx_env_irrel.
eexists_rel_exp_of_typ.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
assert {{ Dom ρ'σ' ≈ ρ'σ' ∈ env_relΔ }} by (etransitivity; [symmetry |]; eassumption).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
destruct_by_head per_univ.
handle_per_univ_elem_irrel.
econstructor; mauto.
eexists.
per_univ_elem_econstructor; eauto.
- eapply rel_exp_pi_core; eauto; try reflexivity.
intros.
extract_output_info_with ρσ c ρ'σ' c' env_relΔA...
- solve_refl.
Qed.
#[export]
Hint Resolve rel_exp_pi_sub : mctt.
Lemma rel_exp_fn_cong : forall {i Γ A A' B M M'},
{{ Γ ⊨ A ≈ A' : Type@i }} ->
{{ Γ , A ⊨ M ≈ M' : B }} ->
{{ Γ ⊨ λ A M ≈ λ A' M' : Π A B }}.
Proof with mautosolve.
intros * [env_relΓ]%rel_exp_of_typ_inversion [env_relΓA].
destruct_conjs.
pose env_relΓA.
match_by_head (per_ctx_env env_relΓA) invert_per_ctx_env.
handle_per_ctx_env_irrel.
eexists_rel_exp_of_pi.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head per_univ.
functional_eval_rewrite_clear.
do 2 eexists.
repeat split; [econstructor | | econstructor]; mauto.
- eapply rel_exp_pi_core; eauto; try reflexivity.
intros.
extract_output_info_with ρ c ρ' c' env_relΓA.
econstructor; eauto.
eexists...
- intros.
extract_output_info_with ρ c ρ' c' env_relΓA.
econstructor; mauto.
intros.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel...
Qed.
#[export]
Hint Resolve rel_exp_fn_cong : mctt.
Lemma rel_exp_fn_sub : forall {Γ σ Δ A M B},
{{ Γ ⊨s σ : Δ }} ->
{{ Δ , A ⊨ M : B }} ->
{{ Γ ⊨ (λ A M)[σ] ≈ λ A[σ] M[q σ] : (Π A B)[σ] }}.
Proof with mautosolve.
intros * [env_relΓ [? [env_relΔ]]] [env_relΔA].
destruct_conjs.
pose env_relΔA.
match_by_head (per_ctx_env env_relΔA) invert_per_ctx_env.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
eexists.
split; econstructor; mauto 4.
- per_univ_elem_econstructor; [apply per_univ_elem_cumu_max_right | | apply Equivalence_Reflexive]; eauto.
intros.
eapply rel_exp_pi_core; eauto; try reflexivity.
clear dependent c.
clear dependent c'.
intros.
extract_output_info_with ρσ c ρ'σ' c' env_relΔA.
econstructor; eauto.
eexists.
eapply per_univ_elem_cumu_max_left...
- intros ? **.
extract_output_info_with ρσ c ρ'σ' c' env_relΔA.
econstructor; mauto.
intros.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel...
Qed.
#[export]
Hint Resolve rel_exp_fn_sub : mctt.
Lemma rel_exp_app_cong : forall {Γ M M' A B N N'},
{{ Γ ⊨ M ≈ M' : Π A B }} ->
{{ Γ ⊨ N ≈ N' : A }} ->
{{ Γ ⊨ M N ≈ M' N' : B[Id,,N] }}.
Proof with intuition.
intros * [env_relΓ]%rel_exp_of_pi_inversion [].
destruct_conjs.
pose env_relΓ.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
assert (equiv_p'_p' : env_relΓ ρ' ρ') by (etransitivity; [symmetry |]; eassumption).
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
rename x2 into in_rel.
destruct_by_head rel_typ.
destruct_by_head rel_exp.
handle_per_univ_elem_irrel.
assert (in_rel m1 m2) by (etransitivity; [| symmetry]; eassumption).
assert (in_rel m1 m'2) by intuition.
(on_all_hyp: destruct_rel_by_assumption in_rel).
handle_per_univ_elem_irrel.
eexists.
split; econstructor; mauto...
Qed.
#[export]
Hint Resolve rel_exp_app_cong : mctt.
Lemma rel_exp_app_sub : forall {Γ σ Δ M A B N},
{{ Γ ⊨s σ : Δ }} ->
{{ Δ ⊨ M : Π A B }} ->
{{ Δ ⊨ N : A }} ->
{{ Γ ⊨ (M N)[σ] ≈ M[σ] N[σ] : B[σ,,N[σ]] }}.
Proof with mautosolve.
intros * [env_relΓ] [env_relΔ]%rel_exp_of_pi_inversion [].
destruct_conjs.
pose env_relΓ.
pose env_relΔ.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
rename x0 into in_rel.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
destruct_by_head rel_exp.
(on_all_hyp_rev: destruct_rel_by_assumption in_rel).
eexists.
split; econstructor...
Qed.
#[export]
Hint Resolve rel_exp_app_sub : mctt.
Lemma rel_exp_pi_beta : forall {Γ A M B N},
{{ Γ , A ⊨ M : B }} ->
{{ Γ ⊨ N : A }} ->
{{ Γ ⊨ (λ A M) N ≈ M[Id,,N] : B[Id,,N] }}.
Proof with mautosolve.
intros * [env_relΓA] [env_relΓ].
destruct_conjs.
pose env_relΓA.
match_by_head (per_ctx_env env_relΓA) invert_per_ctx_env.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
destruct_by_head rel_exp.
rename m into n.
rename m' into n'.
extract_output_info_with ρ n ρ' n' env_relΓA.
eexists.
split; econstructor...
Qed.
#[export]
Hint Resolve rel_exp_pi_beta : mctt.
Lemma rel_exp_pi_eta : forall {Γ M A B},
{{ Γ ⊨ M : Π A B }} ->
{{ Γ ⊨ M ≈ λ A (M[Wk] #0) : Π A B }}.
Proof with mautosolve.
intros * [env_relΓ]%rel_exp_of_pi_inversion.
destruct_conjs.
pose env_relΓ.
eexists_rel_exp_of_pi.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
rename x into in_rel.
destruct_by_head rel_typ.
destruct_by_head rel_exp.
do 2 eexists.
repeat split; only 1,3: econstructor; mauto.
intros.
(on_all_hyp: destruct_rel_by_assumption in_rel)...
Qed.
#[export]
Hint Resolve rel_exp_pi_eta : mctt.
forall R',
rel_typ i B d{{{ o ↦ c }}} B' d{{{ o' ↦ c' }}} R' ->
R' m m') ->
(forall c c' (equiv_c_c' : R c c'), rel_typ i B d{{{ o ↦ c }}} B' d{{{ o' ↦ c' }}} (out_rel c c' equiv_c_c')).
Proof with intuition.
intros.
subst.
(on_all_hyp: destruct_rel_by_assumption R).
econstructor; mauto.
destruct_by_head per_univ.
apply -> per_univ_elem_morphism_iff; eauto.
split; intros; destruct_by_head rel_typ; handle_per_univ_elem_irrel...
exvar (relation domain) ltac:(fun R => assert (rel_typ i B d{{{ o ↦ c }}} B' d{{{ o' ↦ c' }}} R) by mauto).
intuition.
Qed.
Lemma rel_exp_pi_cong : forall {i Γ A A' B B'},
{{ Γ ⊨ A ≈ A' : Type@i }} ->
{{ Γ , A ⊨ B ≈ B' : Type@i }} ->
{{ Γ ⊨ Π A B ≈ Π A' B' : Type@i }}.
Proof with mautosolve.
intros * [env_relΓ]%rel_exp_of_typ_inversion [env_relΓA]%rel_exp_of_typ_inversion.
destruct_conjs.
pose env_relΓA.
match_by_head (per_ctx_env env_relΓA) invert_per_ctx_env.
eexists_rel_exp_of_typ.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head per_univ.
handle_per_univ_elem_irrel.
econstructor; mauto.
eexists.
per_univ_elem_econstructor; eauto.
- intros.
eapply rel_exp_pi_core; eauto.
reflexivity.
- solve_refl.
Qed.
#[export]
Hint Resolve rel_exp_pi_cong : mctt.
Lemma rel_exp_pi_sub : forall {i Γ σ Δ A B},
{{ Γ ⊨s σ : Δ }} ->
{{ Δ ⊨ A : Type@i }} ->
{{ Δ , A ⊨ B : Type@i }} ->
{{ Γ ⊨ (Π A B)[σ] ≈ Π (A[σ]) (B[q σ]) : Type@i }}.
Proof with mautosolve.
intros * [env_relΓ] [env_relΔ]%rel_exp_of_typ_inversion [env_relΔA]%rel_exp_of_typ_inversion.
destruct_conjs.
pose env_relΔ.
pose env_relΔA.
match_by_head (per_ctx_env env_relΔA) invert_per_ctx_env.
handle_per_ctx_env_irrel.
eexists_rel_exp_of_typ.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
assert {{ Dom ρ'σ' ≈ ρ'σ' ∈ env_relΔ }} by (etransitivity; [symmetry |]; eassumption).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
destruct_by_head per_univ.
handle_per_univ_elem_irrel.
econstructor; mauto.
eexists.
per_univ_elem_econstructor; eauto.
- eapply rel_exp_pi_core; eauto; try reflexivity.
intros.
extract_output_info_with ρσ c ρ'σ' c' env_relΔA...
- solve_refl.
Qed.
#[export]
Hint Resolve rel_exp_pi_sub : mctt.
Lemma rel_exp_fn_cong : forall {i Γ A A' B M M'},
{{ Γ ⊨ A ≈ A' : Type@i }} ->
{{ Γ , A ⊨ M ≈ M' : B }} ->
{{ Γ ⊨ λ A M ≈ λ A' M' : Π A B }}.
Proof with mautosolve.
intros * [env_relΓ]%rel_exp_of_typ_inversion [env_relΓA].
destruct_conjs.
pose env_relΓA.
match_by_head (per_ctx_env env_relΓA) invert_per_ctx_env.
handle_per_ctx_env_irrel.
eexists_rel_exp_of_pi.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head per_univ.
functional_eval_rewrite_clear.
do 2 eexists.
repeat split; [econstructor | | econstructor]; mauto.
- eapply rel_exp_pi_core; eauto; try reflexivity.
intros.
extract_output_info_with ρ c ρ' c' env_relΓA.
econstructor; eauto.
eexists...
- intros.
extract_output_info_with ρ c ρ' c' env_relΓA.
econstructor; mauto.
intros.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel...
Qed.
#[export]
Hint Resolve rel_exp_fn_cong : mctt.
Lemma rel_exp_fn_sub : forall {Γ σ Δ A M B},
{{ Γ ⊨s σ : Δ }} ->
{{ Δ , A ⊨ M : B }} ->
{{ Γ ⊨ (λ A M)[σ] ≈ λ A[σ] M[q σ] : (Π A B)[σ] }}.
Proof with mautosolve.
intros * [env_relΓ [? [env_relΔ]]] [env_relΔA].
destruct_conjs.
pose env_relΔA.
match_by_head (per_ctx_env env_relΔA) invert_per_ctx_env.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
eexists.
split; econstructor; mauto 4.
- per_univ_elem_econstructor; [apply per_univ_elem_cumu_max_right | | apply Equivalence_Reflexive]; eauto.
intros.
eapply rel_exp_pi_core; eauto; try reflexivity.
clear dependent c.
clear dependent c'.
intros.
extract_output_info_with ρσ c ρ'σ' c' env_relΔA.
econstructor; eauto.
eexists.
eapply per_univ_elem_cumu_max_left...
- intros ? **.
extract_output_info_with ρσ c ρ'σ' c' env_relΔA.
econstructor; mauto.
intros.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel...
Qed.
#[export]
Hint Resolve rel_exp_fn_sub : mctt.
Lemma rel_exp_app_cong : forall {Γ M M' A B N N'},
{{ Γ ⊨ M ≈ M' : Π A B }} ->
{{ Γ ⊨ N ≈ N' : A }} ->
{{ Γ ⊨ M N ≈ M' N' : B[Id,,N] }}.
Proof with intuition.
intros * [env_relΓ]%rel_exp_of_pi_inversion [].
destruct_conjs.
pose env_relΓ.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
assert (equiv_p'_p' : env_relΓ ρ' ρ') by (etransitivity; [symmetry |]; eassumption).
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
rename x2 into in_rel.
destruct_by_head rel_typ.
destruct_by_head rel_exp.
handle_per_univ_elem_irrel.
assert (in_rel m1 m2) by (etransitivity; [| symmetry]; eassumption).
assert (in_rel m1 m'2) by intuition.
(on_all_hyp: destruct_rel_by_assumption in_rel).
handle_per_univ_elem_irrel.
eexists.
split; econstructor; mauto...
Qed.
#[export]
Hint Resolve rel_exp_app_cong : mctt.
Lemma rel_exp_app_sub : forall {Γ σ Δ M A B N},
{{ Γ ⊨s σ : Δ }} ->
{{ Δ ⊨ M : Π A B }} ->
{{ Δ ⊨ N : A }} ->
{{ Γ ⊨ (M N)[σ] ≈ M[σ] N[σ] : B[σ,,N[σ]] }}.
Proof with mautosolve.
intros * [env_relΓ] [env_relΔ]%rel_exp_of_pi_inversion [].
destruct_conjs.
pose env_relΓ.
pose env_relΔ.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
rename x0 into in_rel.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
destruct_by_head rel_exp.
(on_all_hyp_rev: destruct_rel_by_assumption in_rel).
eexists.
split; econstructor...
Qed.
#[export]
Hint Resolve rel_exp_app_sub : mctt.
Lemma rel_exp_pi_beta : forall {Γ A M B N},
{{ Γ , A ⊨ M : B }} ->
{{ Γ ⊨ N : A }} ->
{{ Γ ⊨ (λ A M) N ≈ M[Id,,N] : B[Id,,N] }}.
Proof with mautosolve.
intros * [env_relΓA] [env_relΓ].
destruct_conjs.
pose env_relΓA.
match_by_head (per_ctx_env env_relΓA) invert_per_ctx_env.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
destruct_by_head rel_exp.
rename m into n.
rename m' into n'.
extract_output_info_with ρ n ρ' n' env_relΓA.
eexists.
split; econstructor...
Qed.
#[export]
Hint Resolve rel_exp_pi_beta : mctt.
Lemma rel_exp_pi_eta : forall {Γ M A B},
{{ Γ ⊨ M : Π A B }} ->
{{ Γ ⊨ M ≈ λ A (M[Wk] #0) : Π A B }}.
Proof with mautosolve.
intros * [env_relΓ]%rel_exp_of_pi_inversion.
destruct_conjs.
pose env_relΓ.
eexists_rel_exp_of_pi.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
rename x into in_rel.
destruct_by_head rel_typ.
destruct_by_head rel_exp.
do 2 eexists.
repeat split; only 1,3: econstructor; mauto.
intros.
(on_all_hyp: destruct_rel_by_assumption in_rel)...
Qed.
#[export]
Hint Resolve rel_exp_pi_eta : mctt.