Mctt.Core.Completeness.LogicalRelation.Lemmas
From Coq Require Import Morphisms Morphisms_Relations RelationClasses Relation_Definitions.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness.LogicalRelation Require Import Definitions Tactics.
Import Domain_Notations.
Add Parametric Morphism M ρ M' ρ' : (rel_exp M ρ M' ρ')
with signature (@relation_equivalence domain) ==> iff as rel_exp_morphism.
Proof.
intros R R' HRR'.
split; intros []; econstructor; intuition.
Qed.
Add Parametric Morphism σ ρ σ' ρ' : (rel_sub σ ρ σ' ρ')
with signature (@relation_equivalence env) ==> iff as rel_sub_morphism.
Proof.
intros R R' HRR'.
split; intros []; econstructor; intuition.
Qed.
Lemma rel_exp_implies_rel_typ : forall {i A ρ A' ρ'},
rel_exp A ρ A' ρ' (per_univ i) ->
exists R, rel_typ i A ρ A' ρ' R.
Proof.
intros.
destruct_by_head rel_exp.
destruct_by_head per_univ.
mauto.
Qed.
#[export]
Hint Resolve rel_exp_implies_rel_typ : mctt.
Lemma rel_typ_implies_rel_exp : forall {i A ρ A' ρ' R},
rel_typ i A ρ A' ρ' R ->
rel_exp A ρ A' ρ' (per_univ i).
Proof.
intros.
destruct_by_head rel_typ.
mauto.
Qed.
#[export]
Hint Resolve rel_typ_implies_rel_exp : mctt.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness.LogicalRelation Require Import Definitions Tactics.
Import Domain_Notations.
Add Parametric Morphism M ρ M' ρ' : (rel_exp M ρ M' ρ')
with signature (@relation_equivalence domain) ==> iff as rel_exp_morphism.
Proof.
intros R R' HRR'.
split; intros []; econstructor; intuition.
Qed.
Add Parametric Morphism σ ρ σ' ρ' : (rel_sub σ ρ σ' ρ')
with signature (@relation_equivalence env) ==> iff as rel_sub_morphism.
Proof.
intros R R' HRR'.
split; intros []; econstructor; intuition.
Qed.
Lemma rel_exp_implies_rel_typ : forall {i A ρ A' ρ'},
rel_exp A ρ A' ρ' (per_univ i) ->
exists R, rel_typ i A ρ A' ρ' R.
Proof.
intros.
destruct_by_head rel_exp.
destruct_by_head per_univ.
mauto.
Qed.
#[export]
Hint Resolve rel_exp_implies_rel_typ : mctt.
Lemma rel_typ_implies_rel_exp : forall {i A ρ A' ρ' R},
rel_typ i A ρ A' ρ' R ->
rel_exp A ρ A' ρ' (per_univ i).
Proof.
intros.
destruct_by_head rel_typ.
mauto.
Qed.
#[export]
Hint Resolve rel_typ_implies_rel_exp : mctt.