Mctt.Core.Completeness.SubstitutionCases
From Coq Require Import Morphisms_Relations RelationClasses.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness Require Import ContextCases LogicalRelation UniverseCases.
Import Domain_Notations.
Lemma rel_sub_id : forall {Γ},
{{ ⊨ Γ }} ->
{{ Γ ⊨s Id ≈ Id : Γ }}.
Proof with mautosolve.
intros * [].
eexists_rel_sub...
Qed.
#[export]
Hint Resolve rel_sub_id : mctt.
Lemma rel_sub_weaken : forall {Γ A},
{{ ⊨ Γ, A }} ->
{{ Γ, A ⊨s Wk ≈ Wk : Γ }}.
Proof with mautosolve.
intros * [env_relΓA].
inversion_by_head (per_ctx_env env_relΓA); subst.
eexists_rel_sub.
intros.
apply_relation_equivalence.
destruct_conjs...
Qed.
#[export]
Hint Resolve rel_sub_weaken : mctt.
Lemma rel_sub_compose_cong : forall {Γ τ τ' Γ' σ σ' Γ''},
{{ Γ ⊨s τ ≈ τ' : Γ' }} ->
{{ Γ' ⊨s σ ≈ σ' : Γ'' }} ->
{{ Γ ⊨s σ ∘ τ ≈ σ' ∘ τ' : Γ'' }}.
Proof with mautosolve.
intros * [env_relΓ [? [env_relΓ']]] [].
destruct_conjs.
pose env_relΓ'.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΓ')...
Qed.
#[export]
Hint Resolve rel_sub_compose_cong : mctt.
Lemma rel_sub_extend_cong : forall {i Γ M M' σ σ' Δ A},
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ Δ ⊨ A : Type@i }} ->
{{ Γ ⊨ M ≈ M' : A[σ] }} ->
{{ Γ ⊨s σ ,, M ≈ σ' ,, M' : Δ, A }}.
Proof with mautosolve.
intros * [env_relΓ [? [env_relΔ]]] HA [].
destruct_conjs.
pose env_relΓ.
pose env_relΔ.
assert {{ ⊨ Δ, A }} as [env_relΔA] by (eapply rel_ctx_extend; eauto; eexists; mauto).
destruct_conjs.
handle_per_ctx_env_irrel.
eexists_rel_sub.
match_by_head (per_ctx_env env_relΔA) invert_per_ctx_env.
destruct_conjs.
handle_per_ctx_env_irrel.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp...
Qed.
#[export]
Hint Resolve rel_sub_extend_cong : mctt.
Lemma rel_sub_id_compose_right : forall {Γ σ Δ},
{{ Γ ⊨s σ : Δ }} ->
{{ Γ ⊨s Id ∘ σ ≈ σ : Δ }}.
Proof with mautosolve.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ)...
Qed.
#[export]
Hint Resolve rel_sub_id_compose_right : mctt.
Lemma rel_sub_id_compose_left : forall {Γ σ Δ},
{{ Γ ⊨s σ : Δ }} ->
{{ Γ ⊨s σ ∘ Id ≈ σ : Δ }}.
Proof with mautosolve.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ)...
Qed.
#[export]
Hint Resolve rel_sub_id_compose_left : mctt.
Lemma rel_sub_compose_assoc : forall {Γ σ Γ' σ' Γ'' σ'' Γ'''},
{{ Γ' ⊨s σ : Γ }} ->
{{ Γ'' ⊨s σ' : Γ' }} ->
{{ Γ''' ⊨s σ'' : Γ'' }} ->
{{ Γ''' ⊨s (σ ∘ σ') ∘ σ'' ≈ σ ∘ (σ' ∘ σ'') : Γ }}.
Proof with mautosolve.
intros * [env_relΓ'] [env_relΓ'' [? []]] [env_relΓ'''].
destruct_conjs.
pose env_relΓ'.
pose env_relΓ''.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ''').
(on_all_hyp: destruct_rel_by_assumption env_relΓ'').
(on_all_hyp: destruct_rel_by_assumption env_relΓ').
econstructor...
Qed.
#[export]
Hint Resolve rel_sub_compose_assoc : mctt.
Lemma rel_sub_extend_compose : forall {Γ τ Γ' M σ Γ'' A i},
{{ Γ' ⊨s σ : Γ'' }} ->
{{ Γ'' ⊨ A : Type@i }} ->
{{ Γ' ⊨ M : A[σ] }} ->
{{ Γ ⊨s τ : Γ' }} ->
{{ Γ ⊨s (σ ,, M) ∘ τ ≈ (σ ∘ τ) ,, M[τ] : Γ'', A }}.
Proof with mautosolve.
intros * [env_relΓ' [? [env_relΓ'']]] HA [] [env_relΓ].
destruct_conjs.
pose env_relΓ'.
pose env_relΓ''.
handle_per_ctx_env_irrel.
assert {{ ⊨ Γ'', A }} as [env_relΓ''A] by (eapply rel_ctx_extend; eauto; eexists; eassumption).
destruct_conjs.
eexists_rel_sub.
match_by_head (per_ctx_env env_relΓ''A) invert_per_ctx_env.
handle_per_ctx_env_irrel.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΓ').
(on_all_hyp: destruct_rel_by_assumption env_relΓ'').
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
econstructor...
Qed.
#[export]
Hint Resolve rel_sub_extend_compose : mctt.
Lemma rel_sub_p_extend : forall {Γ' M σ Γ A},
{{ Γ' ⊨s σ : Γ }} ->
{{ Γ' ⊨ M : A[σ] }} ->
{{ Γ' ⊨s Wk ∘ (σ ,, M) ≈ σ : Γ }}.
Proof with mautosolve.
intros * [env_relΓ'] [].
destruct_conjs.
pose env_relΓ'.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ').
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
econstructor...
Qed.
#[export]
Hint Resolve rel_sub_p_extend : mctt.
Lemma rel_sub_extend : forall {Γ' σ Γ A},
{{ Γ' ⊨s σ : Γ, A }} ->
{{ Γ' ⊨s σ ≈ (Wk ∘ σ) ,, #0[σ] : Γ, A }}.
Proof with mautosolve.
intros * [env_relΓ' [? [env_relΓA]]].
destruct_conjs.
pose env_relΓ'.
inversion_by_head (per_ctx_env env_relΓA); subst.
rename tail_rel into env_relΓ.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ').
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor...
Qed.
#[export]
Hint Resolve rel_sub_extend : mctt.
Lemma rel_sub_sym : forall {Γ σ σ' Δ},
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ Γ ⊨s σ' ≈ σ : Δ }}.
Proof with mautosolve.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_sub.
intros.
assert (env_relΓ ρ' ρ) by (symmetry; eassumption).
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor; mauto; symmetry...
Qed.
#[export]
Hint Resolve rel_sub_sym : mctt.
Lemma rel_sub_trans : forall {Γ σ σ' σ'' Δ},
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ Γ ⊨s σ' ≈ σ'' : Δ }} ->
{{ Γ ⊨s σ ≈ σ'' : Δ }}.
Proof with mautosolve.
intros * [env_relΓ] [].
destruct_conjs.
pose env_relΓ.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
assert (env_relΓ ρ' ρ') by (etransitivity; [symmetry |]; eassumption).
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
functional_eval_rewrite_clear.
econstructor; mauto; etransitivity...
Qed.
#[export]
Hint Resolve rel_sub_trans : mctt.
#[export]
Instance rel_sub_PER {Γ A} : PER (rel_sub_under_ctx Γ A).
Proof.
split; mauto.
Qed.
Lemma rel_sub_conv : forall {Γ σ σ' Δ Δ'},
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ ⊨ Δ ≈ Δ' }} ->
{{ Γ ⊨s σ ≈ σ' : Δ' }}.
Proof with mautosolve.
intros * [? [? [env_relΔ]]] [].
destruct_conjs.
pose env_relΔ.
handle_per_ctx_env_irrel.
assert {{ EF Δ' ≈ Δ' ∈ per_ctx_env ↘ env_relΔ }} by (etransitivity; [symmetry |]; eassumption).
eexists_rel_sub...
Qed.
#[export]
Hint Resolve rel_sub_conv : mctt.
Lemma presup_rel_sub : forall {Γ σ σ' Δ},
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ ⊨ Γ }} /\ {{ Γ ⊨s σ : Δ }} /\ {{ Γ ⊨s σ' : Δ }} /\ {{ ⊨ Δ }}.
Proof with mautosolve.
intros * [].
destruct_conjs.
repeat split; try solve [eexists; eauto];
unfold valid_sub_under_ctx;
etransitivity; only 2,3: symmetry;
econstructor...
Qed.
Lemma rel_sub_eq_subtyp : forall Γ σ σ' Δ Δ',
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ SubE Δ <: Δ' }} ->
{{ Γ ⊨s σ ≈ σ' : Δ' }}.
Proof.
intros * [env_relΓ] HSub.
pose proof (per_ctx_subtyp_to_env _ _ HSub).
destruct_conjs.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor; eauto.
eapply per_ctx_env_subtyping; eauto.
Qed.
#[export]
Hint Resolve rel_sub_eq_subtyp : mctt.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness Require Import ContextCases LogicalRelation UniverseCases.
Import Domain_Notations.
Lemma rel_sub_id : forall {Γ},
{{ ⊨ Γ }} ->
{{ Γ ⊨s Id ≈ Id : Γ }}.
Proof with mautosolve.
intros * [].
eexists_rel_sub...
Qed.
#[export]
Hint Resolve rel_sub_id : mctt.
Lemma rel_sub_weaken : forall {Γ A},
{{ ⊨ Γ, A }} ->
{{ Γ, A ⊨s Wk ≈ Wk : Γ }}.
Proof with mautosolve.
intros * [env_relΓA].
inversion_by_head (per_ctx_env env_relΓA); subst.
eexists_rel_sub.
intros.
apply_relation_equivalence.
destruct_conjs...
Qed.
#[export]
Hint Resolve rel_sub_weaken : mctt.
Lemma rel_sub_compose_cong : forall {Γ τ τ' Γ' σ σ' Γ''},
{{ Γ ⊨s τ ≈ τ' : Γ' }} ->
{{ Γ' ⊨s σ ≈ σ' : Γ'' }} ->
{{ Γ ⊨s σ ∘ τ ≈ σ' ∘ τ' : Γ'' }}.
Proof with mautosolve.
intros * [env_relΓ [? [env_relΓ']]] [].
destruct_conjs.
pose env_relΓ'.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΓ')...
Qed.
#[export]
Hint Resolve rel_sub_compose_cong : mctt.
Lemma rel_sub_extend_cong : forall {i Γ M M' σ σ' Δ A},
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ Δ ⊨ A : Type@i }} ->
{{ Γ ⊨ M ≈ M' : A[σ] }} ->
{{ Γ ⊨s σ ,, M ≈ σ' ,, M' : Δ, A }}.
Proof with mautosolve.
intros * [env_relΓ [? [env_relΔ]]] HA [].
destruct_conjs.
pose env_relΓ.
pose env_relΔ.
assert {{ ⊨ Δ, A }} as [env_relΔA] by (eapply rel_ctx_extend; eauto; eexists; mauto).
destruct_conjs.
handle_per_ctx_env_irrel.
eexists_rel_sub.
match_by_head (per_ctx_env env_relΔA) invert_per_ctx_env.
destruct_conjs.
handle_per_ctx_env_irrel.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp...
Qed.
#[export]
Hint Resolve rel_sub_extend_cong : mctt.
Lemma rel_sub_id_compose_right : forall {Γ σ Δ},
{{ Γ ⊨s σ : Δ }} ->
{{ Γ ⊨s Id ∘ σ ≈ σ : Δ }}.
Proof with mautosolve.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ)...
Qed.
#[export]
Hint Resolve rel_sub_id_compose_right : mctt.
Lemma rel_sub_id_compose_left : forall {Γ σ Δ},
{{ Γ ⊨s σ : Δ }} ->
{{ Γ ⊨s σ ∘ Id ≈ σ : Δ }}.
Proof with mautosolve.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ)...
Qed.
#[export]
Hint Resolve rel_sub_id_compose_left : mctt.
Lemma rel_sub_compose_assoc : forall {Γ σ Γ' σ' Γ'' σ'' Γ'''},
{{ Γ' ⊨s σ : Γ }} ->
{{ Γ'' ⊨s σ' : Γ' }} ->
{{ Γ''' ⊨s σ'' : Γ'' }} ->
{{ Γ''' ⊨s (σ ∘ σ') ∘ σ'' ≈ σ ∘ (σ' ∘ σ'') : Γ }}.
Proof with mautosolve.
intros * [env_relΓ'] [env_relΓ'' [? []]] [env_relΓ'''].
destruct_conjs.
pose env_relΓ'.
pose env_relΓ''.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ''').
(on_all_hyp: destruct_rel_by_assumption env_relΓ'').
(on_all_hyp: destruct_rel_by_assumption env_relΓ').
econstructor...
Qed.
#[export]
Hint Resolve rel_sub_compose_assoc : mctt.
Lemma rel_sub_extend_compose : forall {Γ τ Γ' M σ Γ'' A i},
{{ Γ' ⊨s σ : Γ'' }} ->
{{ Γ'' ⊨ A : Type@i }} ->
{{ Γ' ⊨ M : A[σ] }} ->
{{ Γ ⊨s τ : Γ' }} ->
{{ Γ ⊨s (σ ,, M) ∘ τ ≈ (σ ∘ τ) ,, M[τ] : Γ'', A }}.
Proof with mautosolve.
intros * [env_relΓ' [? [env_relΓ'']]] HA [] [env_relΓ].
destruct_conjs.
pose env_relΓ'.
pose env_relΓ''.
handle_per_ctx_env_irrel.
assert {{ ⊨ Γ'', A }} as [env_relΓ''A] by (eapply rel_ctx_extend; eauto; eexists; eassumption).
destruct_conjs.
eexists_rel_sub.
match_by_head (per_ctx_env env_relΓ''A) invert_per_ctx_env.
handle_per_ctx_env_irrel.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΓ').
(on_all_hyp: destruct_rel_by_assumption env_relΓ'').
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
econstructor...
Qed.
#[export]
Hint Resolve rel_sub_extend_compose : mctt.
Lemma rel_sub_p_extend : forall {Γ' M σ Γ A},
{{ Γ' ⊨s σ : Γ }} ->
{{ Γ' ⊨ M : A[σ] }} ->
{{ Γ' ⊨s Wk ∘ (σ ,, M) ≈ σ : Γ }}.
Proof with mautosolve.
intros * [env_relΓ'] [].
destruct_conjs.
pose env_relΓ'.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ').
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
econstructor...
Qed.
#[export]
Hint Resolve rel_sub_p_extend : mctt.
Lemma rel_sub_extend : forall {Γ' σ Γ A},
{{ Γ' ⊨s σ : Γ, A }} ->
{{ Γ' ⊨s σ ≈ (Wk ∘ σ) ,, #0[σ] : Γ, A }}.
Proof with mautosolve.
intros * [env_relΓ' [? [env_relΓA]]].
destruct_conjs.
pose env_relΓ'.
inversion_by_head (per_ctx_env env_relΓA); subst.
rename tail_rel into env_relΓ.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ').
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor...
Qed.
#[export]
Hint Resolve rel_sub_extend : mctt.
Lemma rel_sub_sym : forall {Γ σ σ' Δ},
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ Γ ⊨s σ' ≈ σ : Δ }}.
Proof with mautosolve.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_sub.
intros.
assert (env_relΓ ρ' ρ) by (symmetry; eassumption).
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor; mauto; symmetry...
Qed.
#[export]
Hint Resolve rel_sub_sym : mctt.
Lemma rel_sub_trans : forall {Γ σ σ' σ'' Δ},
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ Γ ⊨s σ' ≈ σ'' : Δ }} ->
{{ Γ ⊨s σ ≈ σ'' : Δ }}.
Proof with mautosolve.
intros * [env_relΓ] [].
destruct_conjs.
pose env_relΓ.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
assert (env_relΓ ρ' ρ') by (etransitivity; [symmetry |]; eassumption).
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
functional_eval_rewrite_clear.
econstructor; mauto; etransitivity...
Qed.
#[export]
Hint Resolve rel_sub_trans : mctt.
#[export]
Instance rel_sub_PER {Γ A} : PER (rel_sub_under_ctx Γ A).
Proof.
split; mauto.
Qed.
Lemma rel_sub_conv : forall {Γ σ σ' Δ Δ'},
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ ⊨ Δ ≈ Δ' }} ->
{{ Γ ⊨s σ ≈ σ' : Δ' }}.
Proof with mautosolve.
intros * [? [? [env_relΔ]]] [].
destruct_conjs.
pose env_relΔ.
handle_per_ctx_env_irrel.
assert {{ EF Δ' ≈ Δ' ∈ per_ctx_env ↘ env_relΔ }} by (etransitivity; [symmetry |]; eassumption).
eexists_rel_sub...
Qed.
#[export]
Hint Resolve rel_sub_conv : mctt.
Lemma presup_rel_sub : forall {Γ σ σ' Δ},
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ ⊨ Γ }} /\ {{ Γ ⊨s σ : Δ }} /\ {{ Γ ⊨s σ' : Δ }} /\ {{ ⊨ Δ }}.
Proof with mautosolve.
intros * [].
destruct_conjs.
repeat split; try solve [eexists; eauto];
unfold valid_sub_under_ctx;
etransitivity; only 2,3: symmetry;
econstructor...
Qed.
Lemma rel_sub_eq_subtyp : forall Γ σ σ' Δ Δ',
{{ Γ ⊨s σ ≈ σ' : Δ }} ->
{{ SubE Δ <: Δ' }} ->
{{ Γ ⊨s σ ≈ σ' : Δ' }}.
Proof.
intros * [env_relΓ] HSub.
pose proof (per_ctx_subtyp_to_env _ _ HSub).
destruct_conjs.
handle_per_ctx_env_irrel.
eexists_rel_sub.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor; eauto.
eapply per_ctx_env_subtyping; eauto.
Qed.
#[export]
Hint Resolve rel_sub_eq_subtyp : mctt.