Mctt.Extraction.Readback
From Equations Require Import Equations.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Import Readback Evaluation.
From Mctt.Extraction Require Import Evaluation.
Import Domain_Notations.
Generalizable All Variables.
Inductive read_nf_order : nat -> domain_nf -> Prop :=
| rnf_type :
`( read_typ_order s a ->
read_nf_order s d{{{ ⇓ 𝕌@i a }}} )
| rnf_zero :
`( read_nf_order s d{{{ ⇓ ℕ zero }}} )
| rnf_succ :
`( read_nf_order s d{{{ ⇓ ℕ m }}} ->
read_nf_order s d{{{ ⇓ ℕ (succ m) }}} )
| rnf_nat_neut :
`( read_ne_order s m ->
read_nf_order s d{{{ ⇓ ℕ (⇑ a m) }}} )
| rnf_fn :
`( read_typ_order s a ->
eval_app_order m d{{{ ⇑! a s }}} ->
eval_exp_order B d{{{ p ↦ ⇑! a s }}} ->
(forall m' b,
{{ $| m & ⇑! a s |↘ m' }} ->
{{ ⟦ B ⟧ p ↦ ⇑! a s ↘ b }} ->
read_nf_order (S s) d{{{ ⇓ b m' }}}) ->
read_nf_order s d{{{ ⇓ (Π a p B) m }}} )
| rnf_neut :
`( read_ne_order s m ->
read_nf_order s d{{{ ⇓ (⇑ a b) (⇑ c m) }}} )
with read_ne_order : nat -> domain_ne -> Prop :=
| rne_var :
`( read_ne_order s d{{{ !x }}} )
| rne_app :
`( read_ne_order s m ->
read_nf_order s n ->
read_ne_order s d{{{ m n }}} )
| rne_natrec :
`( eval_exp_order B d{{{ p ↦ ⇑! ℕ s }}} ->
(forall b,
{{ ⟦ B ⟧ p ↦ ⇑! ℕ s ↘ b }} ->
read_typ_order (S s) b) ->
eval_exp_order B d{{{ p ↦ zero }}} ->
(forall bz,
{{ ⟦ B ⟧ p ↦ zero ↘ bz }} ->
read_nf_order s d{{{ ⇓ bz mz }}}) ->
eval_exp_order B d{{{ p ↦ succ (⇑! ℕ s) }}} ->
(forall b,
{{ ⟦ B ⟧ p ↦ ⇑! ℕ s ↘ b }} ->
eval_exp_order MS d{{{ p ↦ ⇑! ℕ s ↦ ⇑! b (S s) }}}) ->
(forall b bs ms,
{{ ⟦ B ⟧ p ↦ ⇑! ℕ s ↘ b }} ->
{{ ⟦ B ⟧ p ↦ succ (⇑! ℕ s) ↘ bs }} ->
{{ ⟦ MS ⟧ p ↦ ⇑! ℕ s ↦ ⇑! b (S s) ↘ ms }} ->
read_nf_order (S (S s)) d{{{ ⇓ bs ms }}}) ->
read_ne_order s m ->
read_ne_order s d{{{ rec m under p return B | zero -> mz | succ -> MS end }}} )
with read_typ_order : nat -> domain -> Prop :=
| rtyp_univ :
`( read_typ_order s d{{{ 𝕌@i }}} )
| rtyp_nat :
`( read_typ_order s d{{{ ℕ }}} )
| rtyp_pi :
`( read_typ_order s a ->
eval_exp_order B d{{{ p ↦ ⇑! a s }}} ->
(forall b,
{{ ⟦ B ⟧ p ↦ ⇑! a s ↘ b }} ->
read_typ_order (S s) b) ->
read_typ_order s d{{{ Π a p B }}})
| rtyp_neut :
`( read_ne_order s b ->
read_typ_order s d{{{ ⇑ a b }}} ).
#[local]
Hint Constructors read_nf_order read_ne_order read_typ_order : mctt.
Lemma read_nf_order_sound : forall s d m,
{{ Rnf d in s ↘ m }} ->
read_nf_order s d
with read_ne_order_sound : forall s d m,
{{ Rne d in s ↘ m }} ->
read_ne_order s d
with read_typ_order_sound : forall s d m,
{{ Rtyp d in s ↘ m }} ->
read_typ_order s d.
Proof with (econstructor; intros; functional_eval_rewrite_clear; mauto).
- clear read_nf_order_sound; induction 1...
- clear read_ne_order_sound; induction 1...
- clear read_typ_order_sound; induction 1...
Qed.
#[export]
Hint Resolve read_nf_order_sound read_ne_order_sound read_typ_order_sound : mctt.
#[local]
Ltac impl_obl_tac1 :=
match goal with
| H : read_nf_order _ _ |- _ => progressive_invert H
| H : read_ne_order _ _ |- _ => progressive_invert H
| H : read_typ_order _ _ |- _ => progressive_invert H
end.
#[local]
Ltac impl_obl_tac :=
repeat impl_obl_tac1; try econstructor; mauto.
#[tactic="impl_obl_tac",derive(equations=no,eliminator=no)]
Equations read_nf_impl s d (H : read_nf_order s d) : { m | {{ Rnf d in s ↘ m }} } by struct H :=
| s, d{{{ ⇓ 𝕌@i a }}} , H =>
let (A, HA) := read_typ_impl s a _ in
exist _ A _
| s, d{{{ ⇓ ℕ zero }}}, H => exist _ n{{{ zero }}} _
| s, d{{{ ⇓ ℕ (succ m) }}} , H =>
let (M, HM) := read_nf_impl s d{{{ ⇓ ℕ m }}} _ in
exist _ n{{{ succ M }}} _
| s, d{{{ ⇓ ℕ (⇑ ^_ m) }}} , H =>
let (M, HM) := read_ne_impl s m _ in
exist _ n{{{ ⇑ M }}} _
| s, d{{{ ⇓ (Π a p B) m }}}, H =>
let (A, HA) := read_typ_impl s a _ in
let (m', Hm') := eval_app_impl m d{{{ ⇑! a s }}} _ in
let (b, Hb) := eval_exp_impl B d{{{ p ↦ ⇑! a s }}} _ in
let (M, HM) := read_nf_impl (S s) d{{{ ⇓ b m' }}} _ in
exist _ n{{{ λ A M }}} _
| s, d{{{ ⇓ (⇑ a b) (⇑ c m) }}}, H =>
let (M, HM) := read_ne_impl s m _ in
exist _ n{{{ ⇑ M }}} _
with read_ne_impl s d (H : read_ne_order s d) : { m | {{ Rne d in s ↘ m }} } by struct H :=
| s, d{{{ !x }}}, H => exist _ n{{{ #(s - x - 1) }}} _
| s, d{{{ m n }}}, H =>
let (M, HM) := read_ne_impl s m _ in
let (N, HN) := read_nf_impl s n _ in
exist _ n{{{ M N }}} _
| s, d{{{ rec m under p return B | zero -> mz | succ -> MS end }}}, H =>
let (b, Hb) := eval_exp_impl B d{{{ p ↦ ⇑! ℕ s }}} _ in
let (B', HB') := read_typ_impl (S s) b _ in
let (bz, Hbz) := eval_exp_impl B d{{{ p ↦ zero }}} _ in
let (MZ, HMZ) := read_nf_impl s d{{{ ⇓ bz mz }}} _ in
let (bs, Hbs) := eval_exp_impl B d{{{ p ↦ succ (⇑! ℕ s) }}} _ in
let (ms, Hms) := eval_exp_impl MS d{{{ p ↦ ⇑! ℕ s ↦ ⇑! b (S s) }}} _ in
let (MS', HMS') := read_nf_impl (S (S s)) d{{{ ⇓ bs ms }}} _ in
let (M, HM) := read_ne_impl s m _ in
exist _ n{{{ rec M return B' | zero -> MZ | succ -> MS' end }}} _
with read_typ_impl s d (H : read_typ_order s d) : { m | {{ Rtyp d in s ↘ m }} } by struct H :=
| s, d{{{ 𝕌@i }}}, H => exist _ n{{{ Type@i }}} _
| s, d{{{ ℕ }}}, H => exist _ n{{{ ℕ }}} _
| s, d{{{ Π a p B }}}, H =>
let (A, HA) := read_typ_impl s a _ in
let (b, Hb) := eval_exp_impl B d{{{ p ↦ ⇑! a s }}} _ in
let (B', HB') := read_typ_impl (S s) b _ in
exist _ n{{{ Π A B' }}} _
| s, d{{{ ⇑ a b }}}, H =>
let (B, HB) := read_ne_impl s b _ in
exist _ n{{{ ⇑ B }}} _.
Extraction Inline read_nf_impl_functional
read_ne_impl_functional
read_typ_impl_functional.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Import Readback Evaluation.
From Mctt.Extraction Require Import Evaluation.
Import Domain_Notations.
Generalizable All Variables.
Inductive read_nf_order : nat -> domain_nf -> Prop :=
| rnf_type :
`( read_typ_order s a ->
read_nf_order s d{{{ ⇓ 𝕌@i a }}} )
| rnf_zero :
`( read_nf_order s d{{{ ⇓ ℕ zero }}} )
| rnf_succ :
`( read_nf_order s d{{{ ⇓ ℕ m }}} ->
read_nf_order s d{{{ ⇓ ℕ (succ m) }}} )
| rnf_nat_neut :
`( read_ne_order s m ->
read_nf_order s d{{{ ⇓ ℕ (⇑ a m) }}} )
| rnf_fn :
`( read_typ_order s a ->
eval_app_order m d{{{ ⇑! a s }}} ->
eval_exp_order B d{{{ p ↦ ⇑! a s }}} ->
(forall m' b,
{{ $| m & ⇑! a s |↘ m' }} ->
{{ ⟦ B ⟧ p ↦ ⇑! a s ↘ b }} ->
read_nf_order (S s) d{{{ ⇓ b m' }}}) ->
read_nf_order s d{{{ ⇓ (Π a p B) m }}} )
| rnf_neut :
`( read_ne_order s m ->
read_nf_order s d{{{ ⇓ (⇑ a b) (⇑ c m) }}} )
with read_ne_order : nat -> domain_ne -> Prop :=
| rne_var :
`( read_ne_order s d{{{ !x }}} )
| rne_app :
`( read_ne_order s m ->
read_nf_order s n ->
read_ne_order s d{{{ m n }}} )
| rne_natrec :
`( eval_exp_order B d{{{ p ↦ ⇑! ℕ s }}} ->
(forall b,
{{ ⟦ B ⟧ p ↦ ⇑! ℕ s ↘ b }} ->
read_typ_order (S s) b) ->
eval_exp_order B d{{{ p ↦ zero }}} ->
(forall bz,
{{ ⟦ B ⟧ p ↦ zero ↘ bz }} ->
read_nf_order s d{{{ ⇓ bz mz }}}) ->
eval_exp_order B d{{{ p ↦ succ (⇑! ℕ s) }}} ->
(forall b,
{{ ⟦ B ⟧ p ↦ ⇑! ℕ s ↘ b }} ->
eval_exp_order MS d{{{ p ↦ ⇑! ℕ s ↦ ⇑! b (S s) }}}) ->
(forall b bs ms,
{{ ⟦ B ⟧ p ↦ ⇑! ℕ s ↘ b }} ->
{{ ⟦ B ⟧ p ↦ succ (⇑! ℕ s) ↘ bs }} ->
{{ ⟦ MS ⟧ p ↦ ⇑! ℕ s ↦ ⇑! b (S s) ↘ ms }} ->
read_nf_order (S (S s)) d{{{ ⇓ bs ms }}}) ->
read_ne_order s m ->
read_ne_order s d{{{ rec m under p return B | zero -> mz | succ -> MS end }}} )
with read_typ_order : nat -> domain -> Prop :=
| rtyp_univ :
`( read_typ_order s d{{{ 𝕌@i }}} )
| rtyp_nat :
`( read_typ_order s d{{{ ℕ }}} )
| rtyp_pi :
`( read_typ_order s a ->
eval_exp_order B d{{{ p ↦ ⇑! a s }}} ->
(forall b,
{{ ⟦ B ⟧ p ↦ ⇑! a s ↘ b }} ->
read_typ_order (S s) b) ->
read_typ_order s d{{{ Π a p B }}})
| rtyp_neut :
`( read_ne_order s b ->
read_typ_order s d{{{ ⇑ a b }}} ).
#[local]
Hint Constructors read_nf_order read_ne_order read_typ_order : mctt.
Lemma read_nf_order_sound : forall s d m,
{{ Rnf d in s ↘ m }} ->
read_nf_order s d
with read_ne_order_sound : forall s d m,
{{ Rne d in s ↘ m }} ->
read_ne_order s d
with read_typ_order_sound : forall s d m,
{{ Rtyp d in s ↘ m }} ->
read_typ_order s d.
Proof with (econstructor; intros; functional_eval_rewrite_clear; mauto).
- clear read_nf_order_sound; induction 1...
- clear read_ne_order_sound; induction 1...
- clear read_typ_order_sound; induction 1...
Qed.
#[export]
Hint Resolve read_nf_order_sound read_ne_order_sound read_typ_order_sound : mctt.
#[local]
Ltac impl_obl_tac1 :=
match goal with
| H : read_nf_order _ _ |- _ => progressive_invert H
| H : read_ne_order _ _ |- _ => progressive_invert H
| H : read_typ_order _ _ |- _ => progressive_invert H
end.
#[local]
Ltac impl_obl_tac :=
repeat impl_obl_tac1; try econstructor; mauto.
#[tactic="impl_obl_tac",derive(equations=no,eliminator=no)]
Equations read_nf_impl s d (H : read_nf_order s d) : { m | {{ Rnf d in s ↘ m }} } by struct H :=
| s, d{{{ ⇓ 𝕌@i a }}} , H =>
let (A, HA) := read_typ_impl s a _ in
exist _ A _
| s, d{{{ ⇓ ℕ zero }}}, H => exist _ n{{{ zero }}} _
| s, d{{{ ⇓ ℕ (succ m) }}} , H =>
let (M, HM) := read_nf_impl s d{{{ ⇓ ℕ m }}} _ in
exist _ n{{{ succ M }}} _
| s, d{{{ ⇓ ℕ (⇑ ^_ m) }}} , H =>
let (M, HM) := read_ne_impl s m _ in
exist _ n{{{ ⇑ M }}} _
| s, d{{{ ⇓ (Π a p B) m }}}, H =>
let (A, HA) := read_typ_impl s a _ in
let (m', Hm') := eval_app_impl m d{{{ ⇑! a s }}} _ in
let (b, Hb) := eval_exp_impl B d{{{ p ↦ ⇑! a s }}} _ in
let (M, HM) := read_nf_impl (S s) d{{{ ⇓ b m' }}} _ in
exist _ n{{{ λ A M }}} _
| s, d{{{ ⇓ (⇑ a b) (⇑ c m) }}}, H =>
let (M, HM) := read_ne_impl s m _ in
exist _ n{{{ ⇑ M }}} _
with read_ne_impl s d (H : read_ne_order s d) : { m | {{ Rne d in s ↘ m }} } by struct H :=
| s, d{{{ !x }}}, H => exist _ n{{{ #(s - x - 1) }}} _
| s, d{{{ m n }}}, H =>
let (M, HM) := read_ne_impl s m _ in
let (N, HN) := read_nf_impl s n _ in
exist _ n{{{ M N }}} _
| s, d{{{ rec m under p return B | zero -> mz | succ -> MS end }}}, H =>
let (b, Hb) := eval_exp_impl B d{{{ p ↦ ⇑! ℕ s }}} _ in
let (B', HB') := read_typ_impl (S s) b _ in
let (bz, Hbz) := eval_exp_impl B d{{{ p ↦ zero }}} _ in
let (MZ, HMZ) := read_nf_impl s d{{{ ⇓ bz mz }}} _ in
let (bs, Hbs) := eval_exp_impl B d{{{ p ↦ succ (⇑! ℕ s) }}} _ in
let (ms, Hms) := eval_exp_impl MS d{{{ p ↦ ⇑! ℕ s ↦ ⇑! b (S s) }}} _ in
let (MS', HMS') := read_nf_impl (S (S s)) d{{{ ⇓ bs ms }}} _ in
let (M, HM) := read_ne_impl s m _ in
exist _ n{{{ rec M return B' | zero -> MZ | succ -> MS' end }}} _
with read_typ_impl s d (H : read_typ_order s d) : { m | {{ Rtyp d in s ↘ m }} } by struct H :=
| s, d{{{ 𝕌@i }}}, H => exist _ n{{{ Type@i }}} _
| s, d{{{ ℕ }}}, H => exist _ n{{{ ℕ }}} _
| s, d{{{ Π a p B }}}, H =>
let (A, HA) := read_typ_impl s a _ in
let (b, Hb) := eval_exp_impl B d{{{ p ↦ ⇑! a s }}} _ in
let (B', HB') := read_typ_impl (S s) b _ in
exist _ n{{{ Π A B' }}} _
| s, d{{{ ⇑ a b }}}, H =>
let (B, HB) := read_ne_impl s b _ in
exist _ n{{{ ⇑ B }}} _.
Extraction Inline read_nf_impl_functional
read_ne_impl_functional
read_typ_impl_functional.
The definitions of read_*_impl already come with soundness proofs,
so we only need to prove completeness. However, the completeness
is also obvious from the soundness of eval orders and functional
nature of readback.
#[local]
Ltac functional_read_complete :=
lazymatch goal with
| |- exists (_ : ?T), _ =>
let Horder := fresh "Horder" in
assert T as Horder by mauto 3;
eexists Horder;
lazymatch goal with
| |- exists _, ?L = _ =>
destruct L;
functional_read_rewrite_clear;
eexists; reflexivity
end
end.
Lemma read_nf_impl_complete : forall s d m,
{{ Rnf d in s ↘ m }} ->
exists H H', read_nf_impl s d H = exist _ m H'.
Proof.
intros; functional_read_complete.
Qed.
Lemma read_ne_impl_complete : forall s d m,
{{ Rne d in s ↘ m }} ->
exists H H', read_ne_impl s d H = exist _ m H'.
Proof.
intros; functional_read_complete.
Qed.
Lemma read_typ_impl_complete : forall s d m,
{{ Rtyp d in s ↘ m }} ->
exists H H', read_typ_impl s d H = exist _ m H'.
Proof.
intros; functional_read_complete.
Qed.