Mctt.Frontend.Elaborator
From Coq Require Import Lia List MSets PeanoNat String FunInd.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Syntactic Require Import Syntax.
Open Scope string_scope.
Module StrSet := Make String_as_OT.
Module StrSProp := MSetProperties.Properties StrSet.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Syntactic Require Import Syntax.
Open Scope string_scope.
Module StrSet := Make String_as_OT.
Module StrSProp := MSetProperties.Properties StrSet.
One cannot import notation from module type without
restricting a module to that exact type.
Thus, here we repeat the notation from WSetsOn.
De-monadify with pattern matching for now
Fixpoint lookup (s : string) (ctx : list string) : option nat :=
match ctx with
| nil => None
| c::cs =>
if string_dec c s
then Some 0
else
match lookup s cs with
| Some n => Some (n + 1)%nat
| None => None
end
end
.
Fixpoint elaborate (cst : Cst.obj) (ctx : list string) : option exp :=
match cst with
| Cst.typ n => Some (a_typ n)
| Cst.nat => Some a_nat
| Cst.zero => Some a_zero
| Cst.succ c =>
match elaborate c ctx with
| Some a => Some (a_succ a)
| None => None
end
| Cst.natrec n mx m z sx sr s =>
match elaborate m (mx :: ctx), elaborate z ctx, elaborate s (sr :: sx :: ctx), elaborate n ctx with
| Some m, Some z, Some s, Some n => Some (a_natrec m z s n)
| _, _, _, _ => None
end
| Cst.var s =>
match lookup s ctx with
| Some n => Some (a_var n)
| None => None
end
| Cst.fn s t c =>
match elaborate c (s :: ctx), elaborate t ctx with
| Some a, Some t => Some (a_fn t a)
| _, _ => None
end
| Cst.app c1 c2 =>
match elaborate c1 ctx, elaborate c2 ctx with
| None, _ => None
| _, None => None
| Some a1, Some a2 => Some (a_app a1 a2)
end
| Cst.pi s t c =>
match elaborate c (s :: ctx), elaborate t ctx with
| Some a, Some t => Some (a_pi t a)
| _, _ => None
end
end
.
Functional Scheme elaborate_fun_ind := Induction for elaborate Sort Prop.
Generalizable All Variables.
Inductive user_exp : exp -> Prop :=
| user_exp_typ :
`( user_exp (a_typ i) )
| user_exp_nat :
`( user_exp a_nat )
| user_exp_zero :
`( user_exp a_zero )
| user_exp_succ :
`( user_exp M ->
user_exp (a_succ M) )
| user_exp_natrec :
`( user_exp A ->
user_exp MZ ->
user_exp MS ->
user_exp M ->
user_exp (a_natrec A MZ MS M) )
| user_exp_pi :
`( user_exp A ->
user_exp B ->
user_exp (a_pi A B) )
| user_exp_fn :
`( user_exp A ->
user_exp M ->
user_exp (a_fn A M) )
| user_exp_app :
`( user_exp M ->
user_exp N ->
user_exp (a_app M N) )
| user_exp_vlookup :
`( user_exp (a_var x) ).
#[export]
Hint Constructors user_exp : mctt.
Lemma user_exp_nf : forall M, user_exp (nf_to_exp M)
with user_exp_ne : forall M, user_exp (ne_to_exp M).
Proof.
- clear user_exp_nf; induction M; mauto 3.
- clear user_exp_ne; induction M; mauto 3.
Qed.
Lemma elaborator_gives_user_exp : forall O vs M,
elaborate O vs = Some M ->
user_exp M.
Proof.
intros * Heq. gen M.
functional induction (elaborate O vs) using elaborate_fun_ind;
intros; inversion_clear Heq; mauto 4.
econstructor; mauto 3.
Qed.
Fixpoint cst_variables (cst : Cst.obj) : StrSet.t :=
match cst with
| Cst.typ n => StrSet.empty
| Cst.nat => StrSet.empty
| Cst.zero => StrSet.empty
| Cst.succ c => cst_variables c
| Cst.natrec n mx m z sx sy s => StrSet.union (StrSet.union (cst_variables n) (StrSet.remove mx (cst_variables m))) (StrSet.union (cst_variables z) (StrSet.remove sx (StrSet.remove sy (cst_variables s))))
| Cst.var s => StrSet.singleton s
| Cst.fn s t c => StrSet.union (cst_variables t) (StrSet.remove s (cst_variables c))
| Cst.pi s t c => StrSet.union (cst_variables t) (StrSet.remove s (cst_variables c))
| Cst.app c1 c2 => StrSet.union (cst_variables c1) (cst_variables c2)
end
.
Inductive closed_at : exp -> nat -> Prop :=
| ca_var : forall x n, x < n -> closed_at (a_var x) n
| ca_lam : forall t b n, closed_at t n -> closed_at b (1+n) -> closed_at (a_fn t b) n
| ca_pi : forall t b n, closed_at t n -> closed_at b (1+n) -> closed_at (a_pi t b) n
| ca_app : forall a1 a2 n, closed_at a1 n -> closed_at a2 n ->
closed_at (a_app a1 a2) n
| ca_nat : forall n, closed_at (a_nat) n
| ca_zero : forall n, closed_at (a_zero) n
| ca_type : forall n m, closed_at (a_typ m) n
| ca_succ : forall a n, closed_at a n -> closed_at (a_succ a) n
| ca_natrec : forall n m z s l, closed_at n l -> closed_at m (1+l) -> closed_at z l -> closed_at s (2+l) -> closed_at (a_natrec m z s n) l
.
#[local]
Hint Constructors closed_at: mctt.
match ctx with
| nil => None
| c::cs =>
if string_dec c s
then Some 0
else
match lookup s cs with
| Some n => Some (n + 1)%nat
| None => None
end
end
.
Fixpoint elaborate (cst : Cst.obj) (ctx : list string) : option exp :=
match cst with
| Cst.typ n => Some (a_typ n)
| Cst.nat => Some a_nat
| Cst.zero => Some a_zero
| Cst.succ c =>
match elaborate c ctx with
| Some a => Some (a_succ a)
| None => None
end
| Cst.natrec n mx m z sx sr s =>
match elaborate m (mx :: ctx), elaborate z ctx, elaborate s (sr :: sx :: ctx), elaborate n ctx with
| Some m, Some z, Some s, Some n => Some (a_natrec m z s n)
| _, _, _, _ => None
end
| Cst.var s =>
match lookup s ctx with
| Some n => Some (a_var n)
| None => None
end
| Cst.fn s t c =>
match elaborate c (s :: ctx), elaborate t ctx with
| Some a, Some t => Some (a_fn t a)
| _, _ => None
end
| Cst.app c1 c2 =>
match elaborate c1 ctx, elaborate c2 ctx with
| None, _ => None
| _, None => None
| Some a1, Some a2 => Some (a_app a1 a2)
end
| Cst.pi s t c =>
match elaborate c (s :: ctx), elaborate t ctx with
| Some a, Some t => Some (a_pi t a)
| _, _ => None
end
end
.
Functional Scheme elaborate_fun_ind := Induction for elaborate Sort Prop.
Generalizable All Variables.
Inductive user_exp : exp -> Prop :=
| user_exp_typ :
`( user_exp (a_typ i) )
| user_exp_nat :
`( user_exp a_nat )
| user_exp_zero :
`( user_exp a_zero )
| user_exp_succ :
`( user_exp M ->
user_exp (a_succ M) )
| user_exp_natrec :
`( user_exp A ->
user_exp MZ ->
user_exp MS ->
user_exp M ->
user_exp (a_natrec A MZ MS M) )
| user_exp_pi :
`( user_exp A ->
user_exp B ->
user_exp (a_pi A B) )
| user_exp_fn :
`( user_exp A ->
user_exp M ->
user_exp (a_fn A M) )
| user_exp_app :
`( user_exp M ->
user_exp N ->
user_exp (a_app M N) )
| user_exp_vlookup :
`( user_exp (a_var x) ).
#[export]
Hint Constructors user_exp : mctt.
Lemma user_exp_nf : forall M, user_exp (nf_to_exp M)
with user_exp_ne : forall M, user_exp (ne_to_exp M).
Proof.
- clear user_exp_nf; induction M; mauto 3.
- clear user_exp_ne; induction M; mauto 3.
Qed.
Lemma elaborator_gives_user_exp : forall O vs M,
elaborate O vs = Some M ->
user_exp M.
Proof.
intros * Heq. gen M.
functional induction (elaborate O vs) using elaborate_fun_ind;
intros; inversion_clear Heq; mauto 4.
econstructor; mauto 3.
Qed.
Fixpoint cst_variables (cst : Cst.obj) : StrSet.t :=
match cst with
| Cst.typ n => StrSet.empty
| Cst.nat => StrSet.empty
| Cst.zero => StrSet.empty
| Cst.succ c => cst_variables c
| Cst.natrec n mx m z sx sy s => StrSet.union (StrSet.union (cst_variables n) (StrSet.remove mx (cst_variables m))) (StrSet.union (cst_variables z) (StrSet.remove sx (StrSet.remove sy (cst_variables s))))
| Cst.var s => StrSet.singleton s
| Cst.fn s t c => StrSet.union (cst_variables t) (StrSet.remove s (cst_variables c))
| Cst.pi s t c => StrSet.union (cst_variables t) (StrSet.remove s (cst_variables c))
| Cst.app c1 c2 => StrSet.union (cst_variables c1) (cst_variables c2)
end
.
Inductive closed_at : exp -> nat -> Prop :=
| ca_var : forall x n, x < n -> closed_at (a_var x) n
| ca_lam : forall t b n, closed_at t n -> closed_at b (1+n) -> closed_at (a_fn t b) n
| ca_pi : forall t b n, closed_at t n -> closed_at b (1+n) -> closed_at (a_pi t b) n
| ca_app : forall a1 a2 n, closed_at a1 n -> closed_at a2 n ->
closed_at (a_app a1 a2) n
| ca_nat : forall n, closed_at (a_nat) n
| ca_zero : forall n, closed_at (a_zero) n
| ca_type : forall n m, closed_at (a_typ m) n
| ca_succ : forall a n, closed_at a n -> closed_at (a_succ a) n
| ca_natrec : forall n m z s l, closed_at n l -> closed_at m (1+l) -> closed_at z l -> closed_at s (2+l) -> closed_at (a_natrec m z s n) l
.
#[local]
Hint Constructors closed_at: mctt.
Lemma for the well_scoped proof, lookup succeeds if var is in context
Lemma lookup_known (s : string) (ctx : list string) (H_in : List.In s ctx) : exists n : nat, (lookup s ctx = Some n /\ n < List.length ctx).
Proof.
induction ctx as [| c ctx' IHctx]; simpl in *.
- contradiction.
- destruct (string_dec c s); subst.
+ eexists; split; auto. lia.
+ destruct H_in; try contradiction.
destruct IHctx as [? [? ?]]; [assumption |].
rewrite H0.
eexists; split; auto. lia.
Qed.
Proof.
induction ctx as [| c ctx' IHctx]; simpl in *.
- contradiction.
- destruct (string_dec c s); subst.
+ eexists; split; auto. lia.
+ destruct H_in; try contradiction.
destruct IHctx as [? [? ?]]; [assumption |].
rewrite H0.
eexists; split; auto. lia.
Qed.
Lemma for the well_scoped proof, lookup result always less than context length
Lemma lookup_bound s : forall ctx m, lookup s ctx = Some m -> m < (List.length ctx).
induction ctx.
- intros. discriminate H.
- intros. destruct (string_dec a s).
+ rewrite e in H.
simpl in H.
destruct string_dec in H.
* inversion H.
unfold Datatypes.length.
apply (Nat.lt_0_succ).
* contradiction n. reflexivity.
+ simpl in H.
destruct string_dec in H.
* contradiction n.
* destruct (lookup s ctx);
try discriminate.
inversion H.
rewrite H1.
simpl.
pose (IHctx (m-1)).
rewrite <- H1 in l.
rewrite (Nat.add_sub n1 1) in l.
rewrite <- H1.
specialize (l eq_refl).
lia.
Qed.
Import StrSProp.Dec.
Lemma Subset_to_In : forall xs x, StrSet.singleton x [<=] StrSProp.of_list xs -> In x xs.
Proof.
intro xs; induction xs; simpl; intros.
- rewrite <- F.empty_iff.
apply (H x).
fsetdec.
- specialize (H x).
rewrite F.add_iff in H.
destruct H; [fsetdec | auto |].
right. eapply IHxs.
intros y Hy.
assert (y = x); fsetdec.
Qed.
induction ctx.
- intros. discriminate H.
- intros. destruct (string_dec a s).
+ rewrite e in H.
simpl in H.
destruct string_dec in H.
* inversion H.
unfold Datatypes.length.
apply (Nat.lt_0_succ).
* contradiction n. reflexivity.
+ simpl in H.
destruct string_dec in H.
* contradiction n.
* destruct (lookup s ctx);
try discriminate.
inversion H.
rewrite H1.
simpl.
pose (IHctx (m-1)).
rewrite <- H1 in l.
rewrite (Nat.add_sub n1 1) in l.
rewrite <- H1.
specialize (l eq_refl).
lia.
Qed.
Import StrSProp.Dec.
Lemma Subset_to_In : forall xs x, StrSet.singleton x [<=] StrSProp.of_list xs -> In x xs.
Proof.
intro xs; induction xs; simpl; intros.
- rewrite <- F.empty_iff.
apply (H x).
fsetdec.
- specialize (H x).
rewrite F.add_iff in H.
destruct H; [fsetdec | auto |].
right. eapply IHxs.
intros y Hy.
assert (y = x); fsetdec.
Qed.
Well scopedness lemma
Lemma well_scoped (cst : Cst.obj) : forall ctx, cst_variables cst [<=] StrSProp.of_list ctx ->
exists a : exp, (elaborate cst ctx = Some a) /\ (closed_at a (List.length ctx)).
Proof.
induction cst; intros; simpl in *; mauto.
- (* succ *)
destruct (IHcst _ H) as [ast [-> ?]]; mauto.
- (* natrec *)
assert (cst_variables cst1 [<=] StrSProp.of_list ctx) by fsetdec.
assert (cst_variables cst2 [<=] StrSProp.of_list (s :: ctx)) by (simpl; fsetdec).
assert (cst_variables cst3 [<=] StrSProp.of_list ctx) by fsetdec.
assert (cst_variables cst4 [<=] StrSProp.of_list (s1 :: s0 :: ctx)) by (simpl; fsetdec).
destruct (IHcst1 _ H0) as [ast [-> ?]];
destruct (IHcst2 _ H1) as [ast' [-> ?]];
destruct (IHcst3 _ H2) as [ast'' [-> ?]];
destruct (IHcst4 _ H3) as [ast''' [-> ?]]; mauto.
- (* pi *)
assert (cst_variables cst1 [<=] StrSProp.of_list ctx) by fsetdec.
assert (cst_variables cst2 [<=] StrSProp.of_list (s :: ctx)) by (simpl; fsetdec).
destruct (IHcst1 _ H0) as [ast [-> ?]];
destruct (IHcst2 _ H1) as [ast' [-> ?]]; mauto.
- (* fn *)
assert (cst_variables cst1 [<=] StrSProp.of_list ctx) by fsetdec.
assert (cst_variables cst2 [<=] StrSProp.of_list (s :: ctx)) by (simpl; fsetdec).
destruct (IHcst1 _ H0) as [ast [-> ?]];
destruct (IHcst2 _ H1) as [ast' [-> ?]]; mauto.
- (* app *)
assert (cst_variables cst1 [<=] StrSProp.of_list ctx) by fsetdec.
assert (cst_variables cst2 [<=] StrSProp.of_list ctx) by fsetdec.
destruct (IHcst1 _ H0) as [ast [-> ?]];
destruct (IHcst2 _ H1) as [ast' [-> ?]]; mauto.
- apply Subset_to_In in H.
edestruct lookup_known as [? [-> ?]]; [auto |].
apply (In_nth _ _ s) in H.
destruct H as [? [? ?]].
mauto.
Qed.
Example test_elab : elaborate Cst.nat nil = Some a_nat.
Proof. reflexivity. Qed.
Example test_elab2 : elaborate (Cst.fn "s" Cst.nat (Cst.fn "x" Cst.nat (Cst.fn "s" Cst.nat (Cst.var "q")))) nil = None.
Proof. reflexivity. Qed.
exists a : exp, (elaborate cst ctx = Some a) /\ (closed_at a (List.length ctx)).
Proof.
induction cst; intros; simpl in *; mauto.
- (* succ *)
destruct (IHcst _ H) as [ast [-> ?]]; mauto.
- (* natrec *)
assert (cst_variables cst1 [<=] StrSProp.of_list ctx) by fsetdec.
assert (cst_variables cst2 [<=] StrSProp.of_list (s :: ctx)) by (simpl; fsetdec).
assert (cst_variables cst3 [<=] StrSProp.of_list ctx) by fsetdec.
assert (cst_variables cst4 [<=] StrSProp.of_list (s1 :: s0 :: ctx)) by (simpl; fsetdec).
destruct (IHcst1 _ H0) as [ast [-> ?]];
destruct (IHcst2 _ H1) as [ast' [-> ?]];
destruct (IHcst3 _ H2) as [ast'' [-> ?]];
destruct (IHcst4 _ H3) as [ast''' [-> ?]]; mauto.
- (* pi *)
assert (cst_variables cst1 [<=] StrSProp.of_list ctx) by fsetdec.
assert (cst_variables cst2 [<=] StrSProp.of_list (s :: ctx)) by (simpl; fsetdec).
destruct (IHcst1 _ H0) as [ast [-> ?]];
destruct (IHcst2 _ H1) as [ast' [-> ?]]; mauto.
- (* fn *)
assert (cst_variables cst1 [<=] StrSProp.of_list ctx) by fsetdec.
assert (cst_variables cst2 [<=] StrSProp.of_list (s :: ctx)) by (simpl; fsetdec).
destruct (IHcst1 _ H0) as [ast [-> ?]];
destruct (IHcst2 _ H1) as [ast' [-> ?]]; mauto.
- (* app *)
assert (cst_variables cst1 [<=] StrSProp.of_list ctx) by fsetdec.
assert (cst_variables cst2 [<=] StrSProp.of_list ctx) by fsetdec.
destruct (IHcst1 _ H0) as [ast [-> ?]];
destruct (IHcst2 _ H1) as [ast' [-> ?]]; mauto.
- apply Subset_to_In in H.
edestruct lookup_known as [? [-> ?]]; [auto |].
apply (In_nth _ _ s) in H.
destruct H as [? [? ?]].
mauto.
Qed.
Example test_elab : elaborate Cst.nat nil = Some a_nat.
Proof. reflexivity. Qed.
Example test_elab2 : elaborate (Cst.fn "s" Cst.nat (Cst.fn "x" Cst.nat (Cst.fn "s" Cst.nat (Cst.var "q")))) nil = None.
Proof. reflexivity. Qed.