Mctt.Core.Completeness.LogicalRelation.Lemmas
From Coq Require Import Morphisms Morphisms_Relations RelationClasses Relation_Definitions.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness.LogicalRelation Require Import Definitions Tactics.
Import Domain_Notations.
Add Parametric Morphism M ρ M' ρ' : (rel_exp M ρ M' ρ')
with signature (@relation_equivalence domain) ==> iff as rel_exp_morphism.
Proof.
intros R R' HRR'.
split; intros []; econstructor; intuition.
Qed.
Add Parametric Morphism σ ρ σ' ρ' : (rel_sub σ ρ σ' ρ')
with signature (@relation_equivalence env) ==> iff as rel_sub_morphism.
Proof.
intros R R' HRR'.
split; intros []; econstructor; intuition.
Qed.
Lemma rel_exp_implies_rel_typ : forall {i A ρ A' ρ'},
rel_exp A ρ A' ρ' (per_univ i) ->
exists R, rel_typ i A ρ A' ρ' R.
Proof.
intros.
destruct_by_head rel_exp.
destruct_by_head per_univ.
mauto.
Qed.
#[export]
Hint Resolve rel_exp_implies_rel_typ : mctt.
Lemma rel_typ_implies_rel_exp : forall {i A ρ A' ρ' R},
rel_typ i A ρ A' ρ' R ->
rel_exp A ρ A' ρ' (per_univ i).
Proof.
intros.
destruct_by_head rel_typ.
mauto.
Qed.
#[export]
Hint Resolve rel_typ_implies_rel_exp : mctt.
Lemma rel_exp_clean_inversion : forall {Γ env_rel A M M'},
{{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }} ->
{{ Γ ⊨ M ≈ M' : A }} ->
exists i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists (elem_rel : relation domain),
rel_typ i A ρ A ρ' elem_rel /\ rel_exp M ρ M' ρ' elem_rel.
Proof.
intros * ? [].
destruct_conjs.
handle_per_ctx_env_irrel.
eexists.
eassumption.
Qed.
Ltac invert_rel_exp H :=
(unshelve epose proof (rel_exp_clean_inversion _ H) as []; shelve_unifiable; [eassumption |]; clear H)
+ dependent destruction H.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness.LogicalRelation Require Import Definitions Tactics.
Import Domain_Notations.
Add Parametric Morphism M ρ M' ρ' : (rel_exp M ρ M' ρ')
with signature (@relation_equivalence domain) ==> iff as rel_exp_morphism.
Proof.
intros R R' HRR'.
split; intros []; econstructor; intuition.
Qed.
Add Parametric Morphism σ ρ σ' ρ' : (rel_sub σ ρ σ' ρ')
with signature (@relation_equivalence env) ==> iff as rel_sub_morphism.
Proof.
intros R R' HRR'.
split; intros []; econstructor; intuition.
Qed.
Lemma rel_exp_implies_rel_typ : forall {i A ρ A' ρ'},
rel_exp A ρ A' ρ' (per_univ i) ->
exists R, rel_typ i A ρ A' ρ' R.
Proof.
intros.
destruct_by_head rel_exp.
destruct_by_head per_univ.
mauto.
Qed.
#[export]
Hint Resolve rel_exp_implies_rel_typ : mctt.
Lemma rel_typ_implies_rel_exp : forall {i A ρ A' ρ' R},
rel_typ i A ρ A' ρ' R ->
rel_exp A ρ A' ρ' (per_univ i).
Proof.
intros.
destruct_by_head rel_typ.
mauto.
Qed.
#[export]
Hint Resolve rel_typ_implies_rel_exp : mctt.
Lemma rel_exp_clean_inversion : forall {Γ env_rel A M M'},
{{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }} ->
{{ Γ ⊨ M ≈ M' : A }} ->
exists i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists (elem_rel : relation domain),
rel_typ i A ρ A ρ' elem_rel /\ rel_exp M ρ M' ρ' elem_rel.
Proof.
intros * ? [].
destruct_conjs.
handle_per_ctx_env_irrel.
eexists.
eassumption.
Qed.
Ltac invert_rel_exp H :=
(unshelve epose proof (rel_exp_clean_inversion _ H) as []; shelve_unifiable; [eassumption |]; clear H)
+ dependent destruction H.