Mctt.Core.Semantic.Evaluation.Definitions
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Export Domain.
Import Domain_Notations.
Reserved Notation "'⟦' M '⟧' ρ '↘' r" (in custom judg at level 80, M custom exp at level 99, ρ custom domain at level 99, r custom domain at level 99).
Reserved Notation "'rec' m '⟦return' A | 'zero' -> MZ | 'succ' -> MS 'end⟧' ρ '↘' r" (in custom judg at level 80, m custom domain at level 99, A custom exp at level 99, MZ custom exp at level 99, MS custom exp at level 99, ρ custom domain at level 99, r custom domain at level 99).
Reserved Notation "'$|' m '&' n '|↘' r" (in custom judg at level 80, m custom domain at level 99, n custom domain at level 99, r custom domain at level 99).
Reserved Notation "'eqrec' n 'as' 'Eq' a m1 m2 '⟦return' B | 'refl' -> BR 'end⟧' ρ '↘' r" (in custom judg at level 80, n custom domain at level 99, a custom domain at level 30, m1 custom domain at level 35, m2 custom domain at level 40, B custom exp at level 99, BR custom exp at level 99, ρ custom domain at level 99, r custom domain at level 99).
Reserved Notation "'⟦' σ '⟧s' ρ '↘' ρσ" (in custom judg at level 80, σ custom exp at level 99, ρ custom domain at level 99, ρσ custom domain at level 99).
Generalizable All Variables.
Inductive eval_exp : exp -> env -> domain -> Prop :=
| eval_exp_typ :
`( {{ ⟦ Type@i ⟧ ρ ↘ 𝕌@i }} )
| eval_exp_var :
`( {{ ⟦ # x ⟧ ρ ↘ ^(ρ x) }} )
| eval_exp_nat :
`( {{ ⟦ ℕ ⟧ ρ ↘ ℕ }} )
| eval_exp_zero :
`( {{ ⟦ zero ⟧ ρ ↘ zero }} )
| eval_exp_succ :
`( {{ ⟦ M ⟧ ρ ↘ m }} ->
{{ ⟦ succ M ⟧ ρ ↘ succ m }} )
| eval_exp_natrec :
`( {{ ⟦ M ⟧ ρ ↘ m }} ->
{{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ r }} ->
{{ ⟦ rec M return A | zero -> MZ | succ -> MS end ⟧ ρ ↘ r }} )
| eval_exp_pi :
`( {{ ⟦ A ⟧ ρ ↘ a }} ->
{{ ⟦ Π A B ⟧ ρ ↘ Π a ρ B }} )
| eval_exp_fn :
`( {{ ⟦ λ A M ⟧ ρ ↘ λ ρ M }} )
| eval_exp_app :
`( {{ ⟦ M ⟧ ρ ↘ m }} ->
{{ ⟦ N ⟧ ρ ↘ n }} ->
{{ $| m & n |↘ r }} ->
{{ ⟦ M N ⟧ ρ ↘ r }} )
| eval_exp_eq :
`( {{ ⟦ A ⟧ ρ ↘ a }} ->
{{ ⟦ M1 ⟧ ρ ↘ m1 }} ->
{{ ⟦ M2 ⟧ ρ ↘ m2 }} ->
{{ ⟦ Eq A M1 M2 ⟧ ρ ↘ Eq a m1 m2 }} )
| eval_exp_refl :
`( {{ ⟦ M ⟧ ρ ↘ m }} ->
{{ ⟦ refl A M ⟧ ρ ↘ refl m }} )
| eval_exp_eqrec :
`( {{ ⟦ A ⟧ ρ ↘ a }} ->
{{ ⟦ M1 ⟧ ρ ↘ m1 }} ->
{{ ⟦ M2 ⟧ ρ ↘ m2 }} ->
{{ ⟦ N ⟧ ρ ↘ n }} ->
{{ eqrec n as Eq a m1 m2 ⟦return B | refl -> BR end⟧ ρ ↘ r }} ->
{{ ⟦ eqrec N as Eq A M1 M2 return B | refl -> BR end ⟧ ρ ↘ r }} )
| eval_exp_sub :
`( {{ ⟦ σ ⟧s ρ ↘ ρ' }} ->
{{ ⟦ M ⟧ ρ' ↘ m }} ->
{{ ⟦ M[σ] ⟧ ρ ↘ m }} )
where "'⟦' e '⟧' ρ '↘' r" := (eval_exp e ρ r) (in custom judg)
with eval_natrec : exp -> exp -> exp -> domain -> env -> domain -> Prop :=
| eval_natrec_zero :
`( {{ ⟦ MZ ⟧ ρ ↘ mz }} ->
{{ rec zero ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ mz }} )
| eval_natrec_succ :
`( {{ rec b ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ r }} ->
{{ ⟦ MS ⟧ ρ ↦ b ↦ r ↘ ms }} ->
{{ rec succ b ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ ms }} )
| eval_natrec_neut :
`( {{ ⟦ MZ ⟧ ρ ↘ mz }} ->
{{ ⟦ A ⟧ ρ ↦ ⇑ b m ↘ a }} ->
{{ rec ⇑ b m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ ⇑ a (rec m under ρ return A | zero -> mz | succ -> MS end) }} )
where "'rec' m '⟦return' A | 'zero' -> MZ | 'succ' -> MS 'end⟧' ρ '↘' r" := (eval_natrec A MZ MS m ρ r) (in custom judg)
with eval_app : domain -> domain -> domain -> Prop :=
| eval_app_fn :
`( {{ ⟦ M ⟧ ρ ↦ n ↘ m }} ->
{{ $| λ ρ M & n |↘ m }} )
| eval_app_neut :
`( {{ ⟦ B ⟧ ρ ↦ n ↘ b }} ->
{{ $| ⇑ (Π a ρ B) m & n |↘ ⇑ b (m (⇓ a n)) }} )
where "'$|' m '&' n '|↘' r" := (eval_app m n r) (in custom judg)
with eval_eqrec : domain -> exp -> exp -> domain -> domain -> domain -> env -> domain -> Prop :=
| eval_eqrec_refl :
`( {{ ⟦ BR ⟧ ρ ↦ n ↘ br }} ->
{{ eqrec refl n as Eq a m1 m2 ⟦return B | refl -> BR end⟧ ρ ↘ br }} )
| eval_eqrec_neut :
`( {{ ⟦ B ⟧ ρ ↦ m1 ↦ m2 ↦ ⇑ (Eq a m1 m2) n ↘ b }} ->
{{ eqrec ⇑ c n as Eq a m1 m2 ⟦return B | refl -> BR end⟧ ρ ↘ ⇑ b (eqrec n under ρ as Eq a m1 m2 return B | refl -> BR end) }} )
where "'eqrec' n 'as' 'Eq' a m1 m2 '⟦return' B | 'refl' -> BR 'end⟧' ρ '↘' r" := (eval_eqrec a B BR m1 m2 n ρ r) (in custom judg)
with eval_sub : sub -> env -> env -> Prop :=
| eval_sub_id :
`( {{ ⟦ Id ⟧s ρ ↘ ρ }} )
| eval_sub_weaken :
`( {{ ⟦ Wk ⟧s ρ ↘ ρ ↯ }} )
| eval_sub_extend :
`( {{ ⟦ σ ⟧s ρ ↘ ρσ }} ->
{{ ⟦ M ⟧ ρ ↘ m }} ->
{{ ⟦ σ ,, M ⟧s ρ ↘ ρσ ↦ m }} )
| eval_sub_compose :
`( {{ ⟦ τ ⟧s ρ ↘ ρτ }} ->
{{ ⟦ σ ⟧s ρτ ↘ ρτσ }} ->
{{ ⟦ σ ∘ τ ⟧s ρ ↘ ρτσ }} )
where "'⟦' σ '⟧s' ρ '↘' ρσ" := (eval_sub σ ρ ρσ) (in custom judg)
.
Scheme eval_exp_mut_ind := Induction for eval_exp Sort Prop
with eval_natrec_mut_ind := Induction for eval_natrec Sort Prop
with eval_app_mut_ind := Induction for eval_app Sort Prop
with eval_eqrec_mut_ind := Induction for eval_eqrec Sort Prop
with eval_sub_mut_ind := Induction for eval_sub Sort Prop.
Combined Scheme eval_mut_ind from
eval_exp_mut_ind,
eval_natrec_mut_ind,
eval_app_mut_ind,
eval_eqrec_mut_ind,
eval_sub_mut_ind.
#[export]
Hint Constructors eval_exp eval_natrec eval_app eval_eqrec eval_sub : mctt.
From Mctt.Core.Semantic Require Export Domain.
Import Domain_Notations.
Reserved Notation "'⟦' M '⟧' ρ '↘' r" (in custom judg at level 80, M custom exp at level 99, ρ custom domain at level 99, r custom domain at level 99).
Reserved Notation "'rec' m '⟦return' A | 'zero' -> MZ | 'succ' -> MS 'end⟧' ρ '↘' r" (in custom judg at level 80, m custom domain at level 99, A custom exp at level 99, MZ custom exp at level 99, MS custom exp at level 99, ρ custom domain at level 99, r custom domain at level 99).
Reserved Notation "'$|' m '&' n '|↘' r" (in custom judg at level 80, m custom domain at level 99, n custom domain at level 99, r custom domain at level 99).
Reserved Notation "'eqrec' n 'as' 'Eq' a m1 m2 '⟦return' B | 'refl' -> BR 'end⟧' ρ '↘' r" (in custom judg at level 80, n custom domain at level 99, a custom domain at level 30, m1 custom domain at level 35, m2 custom domain at level 40, B custom exp at level 99, BR custom exp at level 99, ρ custom domain at level 99, r custom domain at level 99).
Reserved Notation "'⟦' σ '⟧s' ρ '↘' ρσ" (in custom judg at level 80, σ custom exp at level 99, ρ custom domain at level 99, ρσ custom domain at level 99).
Generalizable All Variables.
Inductive eval_exp : exp -> env -> domain -> Prop :=
| eval_exp_typ :
`( {{ ⟦ Type@i ⟧ ρ ↘ 𝕌@i }} )
| eval_exp_var :
`( {{ ⟦ # x ⟧ ρ ↘ ^(ρ x) }} )
| eval_exp_nat :
`( {{ ⟦ ℕ ⟧ ρ ↘ ℕ }} )
| eval_exp_zero :
`( {{ ⟦ zero ⟧ ρ ↘ zero }} )
| eval_exp_succ :
`( {{ ⟦ M ⟧ ρ ↘ m }} ->
{{ ⟦ succ M ⟧ ρ ↘ succ m }} )
| eval_exp_natrec :
`( {{ ⟦ M ⟧ ρ ↘ m }} ->
{{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ r }} ->
{{ ⟦ rec M return A | zero -> MZ | succ -> MS end ⟧ ρ ↘ r }} )
| eval_exp_pi :
`( {{ ⟦ A ⟧ ρ ↘ a }} ->
{{ ⟦ Π A B ⟧ ρ ↘ Π a ρ B }} )
| eval_exp_fn :
`( {{ ⟦ λ A M ⟧ ρ ↘ λ ρ M }} )
| eval_exp_app :
`( {{ ⟦ M ⟧ ρ ↘ m }} ->
{{ ⟦ N ⟧ ρ ↘ n }} ->
{{ $| m & n |↘ r }} ->
{{ ⟦ M N ⟧ ρ ↘ r }} )
| eval_exp_eq :
`( {{ ⟦ A ⟧ ρ ↘ a }} ->
{{ ⟦ M1 ⟧ ρ ↘ m1 }} ->
{{ ⟦ M2 ⟧ ρ ↘ m2 }} ->
{{ ⟦ Eq A M1 M2 ⟧ ρ ↘ Eq a m1 m2 }} )
| eval_exp_refl :
`( {{ ⟦ M ⟧ ρ ↘ m }} ->
{{ ⟦ refl A M ⟧ ρ ↘ refl m }} )
| eval_exp_eqrec :
`( {{ ⟦ A ⟧ ρ ↘ a }} ->
{{ ⟦ M1 ⟧ ρ ↘ m1 }} ->
{{ ⟦ M2 ⟧ ρ ↘ m2 }} ->
{{ ⟦ N ⟧ ρ ↘ n }} ->
{{ eqrec n as Eq a m1 m2 ⟦return B | refl -> BR end⟧ ρ ↘ r }} ->
{{ ⟦ eqrec N as Eq A M1 M2 return B | refl -> BR end ⟧ ρ ↘ r }} )
| eval_exp_sub :
`( {{ ⟦ σ ⟧s ρ ↘ ρ' }} ->
{{ ⟦ M ⟧ ρ' ↘ m }} ->
{{ ⟦ M[σ] ⟧ ρ ↘ m }} )
where "'⟦' e '⟧' ρ '↘' r" := (eval_exp e ρ r) (in custom judg)
with eval_natrec : exp -> exp -> exp -> domain -> env -> domain -> Prop :=
| eval_natrec_zero :
`( {{ ⟦ MZ ⟧ ρ ↘ mz }} ->
{{ rec zero ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ mz }} )
| eval_natrec_succ :
`( {{ rec b ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ r }} ->
{{ ⟦ MS ⟧ ρ ↦ b ↦ r ↘ ms }} ->
{{ rec succ b ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ ms }} )
| eval_natrec_neut :
`( {{ ⟦ MZ ⟧ ρ ↘ mz }} ->
{{ ⟦ A ⟧ ρ ↦ ⇑ b m ↘ a }} ->
{{ rec ⇑ b m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ ⇑ a (rec m under ρ return A | zero -> mz | succ -> MS end) }} )
where "'rec' m '⟦return' A | 'zero' -> MZ | 'succ' -> MS 'end⟧' ρ '↘' r" := (eval_natrec A MZ MS m ρ r) (in custom judg)
with eval_app : domain -> domain -> domain -> Prop :=
| eval_app_fn :
`( {{ ⟦ M ⟧ ρ ↦ n ↘ m }} ->
{{ $| λ ρ M & n |↘ m }} )
| eval_app_neut :
`( {{ ⟦ B ⟧ ρ ↦ n ↘ b }} ->
{{ $| ⇑ (Π a ρ B) m & n |↘ ⇑ b (m (⇓ a n)) }} )
where "'$|' m '&' n '|↘' r" := (eval_app m n r) (in custom judg)
with eval_eqrec : domain -> exp -> exp -> domain -> domain -> domain -> env -> domain -> Prop :=
| eval_eqrec_refl :
`( {{ ⟦ BR ⟧ ρ ↦ n ↘ br }} ->
{{ eqrec refl n as Eq a m1 m2 ⟦return B | refl -> BR end⟧ ρ ↘ br }} )
| eval_eqrec_neut :
`( {{ ⟦ B ⟧ ρ ↦ m1 ↦ m2 ↦ ⇑ (Eq a m1 m2) n ↘ b }} ->
{{ eqrec ⇑ c n as Eq a m1 m2 ⟦return B | refl -> BR end⟧ ρ ↘ ⇑ b (eqrec n under ρ as Eq a m1 m2 return B | refl -> BR end) }} )
where "'eqrec' n 'as' 'Eq' a m1 m2 '⟦return' B | 'refl' -> BR 'end⟧' ρ '↘' r" := (eval_eqrec a B BR m1 m2 n ρ r) (in custom judg)
with eval_sub : sub -> env -> env -> Prop :=
| eval_sub_id :
`( {{ ⟦ Id ⟧s ρ ↘ ρ }} )
| eval_sub_weaken :
`( {{ ⟦ Wk ⟧s ρ ↘ ρ ↯ }} )
| eval_sub_extend :
`( {{ ⟦ σ ⟧s ρ ↘ ρσ }} ->
{{ ⟦ M ⟧ ρ ↘ m }} ->
{{ ⟦ σ ,, M ⟧s ρ ↘ ρσ ↦ m }} )
| eval_sub_compose :
`( {{ ⟦ τ ⟧s ρ ↘ ρτ }} ->
{{ ⟦ σ ⟧s ρτ ↘ ρτσ }} ->
{{ ⟦ σ ∘ τ ⟧s ρ ↘ ρτσ }} )
where "'⟦' σ '⟧s' ρ '↘' ρσ" := (eval_sub σ ρ ρσ) (in custom judg)
.
Scheme eval_exp_mut_ind := Induction for eval_exp Sort Prop
with eval_natrec_mut_ind := Induction for eval_natrec Sort Prop
with eval_app_mut_ind := Induction for eval_app Sort Prop
with eval_eqrec_mut_ind := Induction for eval_eqrec Sort Prop
with eval_sub_mut_ind := Induction for eval_sub Sort Prop.
Combined Scheme eval_mut_ind from
eval_exp_mut_ind,
eval_natrec_mut_ind,
eval_app_mut_ind,
eval_eqrec_mut_ind,
eval_sub_mut_ind.
#[export]
Hint Constructors eval_exp eval_natrec eval_app eval_eqrec eval_sub : mctt.