Mctt.Core.Semantic.PER.Lemmas
From Coq Require Import Equivalence Lia Morphisms Morphisms_Prop Morphisms_Relations PeanoNat Relation_Definitions RelationClasses.
From Equations Require Import Equations.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Import PER.CoreTactics PER.Definitions.
Import Domain_Notations.
Add Parametric Morphism R0 `(R0_morphism : Proper _ ((@relation_equivalence domain) ==> (@relation_equivalence domain)) R0) A ρ A' ρ' : (rel_mod_eval R0 A ρ A' ρ')
with signature (@relation_equivalence domain) ==> iff as rel_mod_eval_morphism.
Proof.
split; intros []; econstructor; try eassumption;
[> eapply R0_morphism; [symmetry + idtac |]; eassumption ..].
Qed.
Add Parametric Morphism f a f' a' : (rel_mod_app f a f' a')
with signature (@relation_equivalence domain) ==> iff as rel_mod_app_morphism.
Proof.
intros * HRR'.
split; intros []; econstructor; try eassumption;
apply HRR'; eassumption.
Qed.
Lemma per_bot_sym : forall m n,
{{ Dom m ≈ n ∈ per_bot }} ->
{{ Dom n ≈ m ∈ per_bot }}.
Proof with solve [eauto].
intros * H s.
pose proof H s.
destruct_conjs...
Qed.
#[export]
Hint Resolve per_bot_sym : mctt.
Lemma per_bot_trans : forall m n l,
{{ Dom m ≈ n ∈ per_bot }} ->
{{ Dom n ≈ l ∈ per_bot }} ->
{{ Dom m ≈ l ∈ per_bot }}.
Proof with solve [eauto].
intros * Hmn Hnl s.
pose proof (Hmn s, Hnl s).
destruct_conjs.
functional_read_rewrite_clear...
Qed.
#[export]
Hint Resolve per_bot_trans : mctt.
#[export]
Instance per_bot_PER : PER per_bot.
Proof.
split.
- eauto using per_bot_sym.
- eauto using per_bot_trans.
Qed.
Lemma var_per_bot : forall {n},
{{ Dom !n ≈ !n ∈ per_bot }}.
Proof.
intros ? ?. repeat econstructor.
Qed.
#[export]
Hint Resolve var_per_bot : mctt.
Lemma per_top_sym : forall m n,
{{ Dom m ≈ n ∈ per_top }} ->
{{ Dom n ≈ m ∈ per_top }}.
Proof with solve [eauto].
intros * H s.
pose proof H s.
destruct_conjs...
Qed.
#[export]
Hint Resolve per_top_sym : mctt.
Lemma per_top_trans : forall m n l,
{{ Dom m ≈ n ∈ per_top }} ->
{{ Dom n ≈ l ∈ per_top }} ->
{{ Dom m ≈ l ∈ per_top }}.
Proof with solve [eauto].
intros * Hmn Hnl s.
pose proof (Hmn s, Hnl s).
destruct_conjs.
functional_read_rewrite_clear...
Qed.
#[export]
Hint Resolve per_top_trans : mctt.
#[export]
Instance per_top_PER : PER per_top.
Proof.
split.
- eauto using per_top_sym.
- eauto using per_top_trans.
Qed.
Lemma per_bot_then_per_top : forall m m' a a' b b' c c',
{{ Dom m ≈ m' ∈ per_bot }} ->
{{ Dom ⇓ (⇑ a b) ⇑ c m ≈ ⇓ (⇑ a' b') ⇑ c' m' ∈ per_top }}.
Proof.
intros * H s.
pose proof H s.
destruct_conjs.
eexists; split; constructor; eassumption.
Qed.
#[export]
Hint Resolve per_bot_then_per_top : mctt.
Lemma per_top_typ_sym : forall m n,
{{ Dom m ≈ n ∈ per_top_typ }} ->
{{ Dom n ≈ m ∈ per_top_typ }}.
Proof with solve [eauto].
intros * H s.
pose proof H s.
destruct_conjs...
Qed.
#[export]
Hint Resolve per_top_typ_sym : mctt.
Lemma per_top_typ_trans : forall m n l,
{{ Dom m ≈ n ∈ per_top_typ }} ->
{{ Dom n ≈ l ∈ per_top_typ }} ->
{{ Dom m ≈ l ∈ per_top_typ }}.
Proof with solve [eauto].
intros * Hmn Hnl s.
pose proof (Hmn s, Hnl s).
destruct_conjs.
functional_read_rewrite_clear...
Qed.
#[export]
Hint Resolve per_top_typ_trans : mctt.
#[export]
Instance per_top_typ_PER : PER per_top_typ.
Proof.
split.
- eauto using per_top_typ_sym.
- eauto using per_top_typ_trans.
Qed.
Lemma per_nat_sym : forall m n,
{{ Dom m ≈ n ∈ per_nat }} ->
{{ Dom n ≈ m ∈ per_nat }}.
Proof with mautosolve.
induction 1; econstructor...
Qed.
#[export]
Hint Resolve per_nat_sym : mctt.
Lemma per_nat_trans : forall m n l,
{{ Dom m ≈ n ∈ per_nat }} ->
{{ Dom n ≈ l ∈ per_nat }} ->
{{ Dom m ≈ l ∈ per_nat }}.
Proof with mautosolve.
intros * H. gen l.
induction H; inversion_clear 1; econstructor...
Qed.
#[export]
Hint Resolve per_nat_trans : mctt.
#[export]
Instance per_nat_PER : PER per_nat.
Proof.
split.
- eauto using per_nat_sym.
- eauto using per_nat_trans.
Qed.
Lemma per_eq_sym : forall point_rel m1 m2 n n',
PER point_rel ->
{{ Dom n ≈ n' ∈ per_eq point_rel m1 m2 }} ->
{{ Dom n' ≈ n ∈ per_eq point_rel m1 m2 }}.
Proof with mautosolve 3.
intros * [] []; econstructor...
Qed.
#[export]
Hint Resolve per_eq_sym : mctt.
Lemma per_eq_trans : forall point_rel m1 m2 n n' n'',
PER point_rel ->
{{ Dom n ≈ n' ∈ per_eq point_rel m1 m2 }} ->
{{ Dom n' ≈ n'' ∈ per_eq point_rel m1 m2 }} ->
{{ Dom n ≈ n'' ∈ per_eq point_rel m1 m2 }}.
Proof with mautosolve 3.
intros * [] [];
inversion_clear 1;
econstructor...
Qed.
#[export]
Hint Resolve per_eq_trans : mctt.
#[export]
Instance per_eq_PER {point_rel m1 m2} {Hpoint : PER point_rel} : PER (per_eq point_rel m1 m2).
Proof.
split.
- eauto using per_eq_sym.
- eauto using per_eq_trans.
Qed.
Add Parametric Morphism : per_eq
with signature (@relation_equivalence domain) ==> eq ==> eq ==> eq ==> eq ==> iff as per_eq_morphism_iff1.
Proof with solve [intuition].
simpl.
intros R R' HRR'.
split; intros []; econstructor; eauto...
Qed.
Add Parametric Morphism : per_eq
with signature (@relation_equivalence domain) ==> eq ==> eq ==> (@relation_equivalence domain) as per_eq_morphism_relation_equivalence1.
Proof with solve [intuition].
simpl.
intros * H ? ? ? ?.
simpl.
rewrite H.
reflexivity.
Qed.
Add Parametric Morphism point_rel (HPER : PER point_rel) : (per_eq point_rel)
with signature point_rel ==> eq ==> eq ==> eq ==> iff as per_eq_morphism_iff2.
Proof with solve [intuition].
simpl.
intros m1 m1' Hm1m1'.
split; intros []; econstructor; eauto; etransitivity...
Qed.
Add Parametric Morphism point_rel (HPER : PER point_rel) : (per_eq point_rel)
with signature point_rel ==> eq ==> (@relation_equivalence domain) as per_eq_morphism_relation_equivalence2.
Proof with solve [intuition].
simpl.
intros * H ? ? ?.
simpl.
rewrite H.
reflexivity.
Qed.
Add Parametric Morphism point_rel (HPER : PER point_rel) m1 : (per_eq point_rel m1)
with signature point_rel ==> eq ==> eq ==> iff as per_eq_morphism_iff3.
Proof with solve [intuition].
simpl.
intros m2 m2' Hm2m2'.
split; intros []; econstructor; eauto; etransitivity...
Qed.
Add Parametric Morphism point_rel (HPER : PER point_rel) m1 : (per_eq point_rel m1)
with signature point_rel ==> (@relation_equivalence domain) as per_eq_morphism_relation_equivalence3.
Proof with solve [intuition].
simpl.
intros * H ? ?.
simpl.
rewrite H.
reflexivity.
Qed.
Lemma per_ne_sym : forall m n,
{{ Dom m ≈ n ∈ per_ne }} ->
{{ Dom n ≈ m ∈ per_ne }}.
Proof with mautosolve.
intros * [].
econstructor...
Qed.
#[export]
Hint Resolve per_ne_sym : mctt.
Lemma per_ne_trans : forall m n l,
{{ Dom m ≈ n ∈ per_ne }} ->
{{ Dom n ≈ l ∈ per_ne }} ->
{{ Dom m ≈ l ∈ per_ne }}.
Proof with mautosolve.
intros * [].
inversion_clear 1.
econstructor...
Qed.
#[export]
Hint Resolve per_ne_trans : mctt.
#[export]
Instance per_ne_PER : PER per_ne.
Proof.
split.
- eauto using per_ne_sym.
- eauto using per_ne_trans.
Qed.
Add Parametric Morphism i : (per_univ_elem i)
with signature (@relation_equivalence domain) ==> eq ==> eq ==> iff as per_univ_elem_morphism_iff.
Proof with mautosolve.
simpl.
intros R R' HRR'.
split; intros Horig; [gen R' | gen R];
induction Horig using per_univ_elem_ind; basic_per_univ_elem_econstructor; eauto;
try (etransitivity; [symmetry + idtac|]; eassumption);
intros;
destruct_rel_mod_eval;
econstructor...
Qed.
Add Parametric Morphism i : (per_univ_elem i)
with signature (@relation_equivalence domain) ==> (@relation_equivalence domain) as per_univ_elem_morphism_relation_equivalence.
Proof with mautosolve.
intros * H ? ?.
simpl.
rewrite H.
reflexivity.
Qed.
Add Parametric Morphism i A ρ A' ρ' : (rel_typ i A ρ A' ρ')
with signature (@relation_equivalence domain) ==> iff as rel_typ_morphism.
Proof.
intros * HRR'.
split; intros []; econstructor; try eassumption;
[setoid_rewrite <- HRR' | setoid_rewrite HRR']; eassumption.
Qed.
Lemma domain_app_per : forall f f' a a',
{{ Dom f ≈ f' ∈ per_bot }} ->
{{ Dom a ≈ a' ∈ per_top }} ->
{{ Dom f a ≈ f' a' ∈ per_bot }}.
Proof.
intros. intros s.
destruct (H s) as [? []].
destruct (H0 s) as [? []].
mauto.
Qed.
Ltac rewrite_relation_equivalence_left :=
repeat match goal with
| H : ?R1 <~> ?R2 |- _ =>
try setoid_rewrite H;
(on_all_hyp: fun H' => assert_fails (unify H H'); unmark H; setoid_rewrite H in H');
let T := type of H in
fold (id T) in H
end; unfold id in *.
Ltac rewrite_relation_equivalence_right :=
repeat match goal with
| H : ?R1 <~> ?R2 |- _ =>
try setoid_rewrite <- H;
(on_all_hyp: fun H' => assert_fails (unify H H'); unmark H; setoid_rewrite <- H in H');
let T := type of H in
fold (id T) in H
end; unfold id in *.
Ltac clear_relation_equivalence :=
repeat match goal with
| H : ?R1 <~> ?R2 |- _ =>
(unify R1 R2; clear H) + (is_var R1; clear R1 H) + (is_var R2; clear R2 H)
end.
Ltac apply_relation_equivalence :=
clear_relation_equivalence;
rewrite_relation_equivalence_right;
clear_relation_equivalence;
rewrite_relation_equivalence_left;
clear_relation_equivalence.
Lemma per_univ_elem_right_irrel : forall i i' R a b R' b',
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ DF a ≈ b' ∈ per_univ_elem i' ↘ R' }} ->
(R <~> R').
Proof with (destruct_rel_mod_eval; destruct_rel_mod_app; functional_eval_rewrite_clear; econstructor; intuition).
simpl.
intros * Horig.
remember a as a' in |- *.
gen a' b' R'.
induction Horig using per_univ_elem_ind; intros * Heq Hright;
subst; basic_invert_per_univ_elem Hright; unfold per_univ;
intros;
apply_relation_equivalence;
try reflexivity.
specialize (IHHorig _ _ _ eq_refl equiv_a_a').
split; intros.
- rename equiv_c_c' into equiv0_c_c'.
assert (equiv_c_c' : in_rel c c') by firstorder...
- assert (equiv0_c_c' : in_rel0 c c') by firstorder...
- assert (point_rel <~> point_rel0) by mauto 3.
etransitivity; [apply per_eq_morphism_relation_equivalence3 | apply per_eq_morphism_relation_equivalence1]; eauto.
etransitivity; [symmetry |]; intuition.
Qed.
#[local]
Ltac per_univ_elem_right_irrel_assert1 :=
match goal with
| H1 : {{ DF ^?a ≈ ^?b ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ^?a ≈ ^?b' ∈ per_univ_elem ?i' ↘ ?R2 }} |- _ =>
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_univ_elem_right_irrel; [apply H1 | apply H2])
end
end.
#[local]
Ltac per_univ_elem_right_irrel_assert := repeat per_univ_elem_right_irrel_assert1.
Lemma per_univ_elem_sym : forall i R a b,
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ DF b ≈ a ∈ per_univ_elem i ↘ R }} /\
(forall m m',
{{ Dom m ≈ m' ∈ R }} ->
{{ Dom m' ≈ m ∈ R }}).
Proof with mautosolve.
simpl.
induction 1 using per_univ_elem_ind; subst.
- split.
+ apply per_univ_elem_core_univ'; firstorder.
+ intros.
rewrite H1 in *.
destruct_by_head per_univ.
eexists.
eapply proj1...
- split; [basic_per_univ_elem_econstructor | intros; apply_relation_equivalence]...
- destruct_conjs.
split.
+ basic_per_univ_elem_econstructor; eauto.
intros.
assert (in_rel c' c) by eauto.
assert (in_rel c c) by (etransitivity; eassumption).
destruct_rel_mod_eval.
functional_eval_rewrite_clear.
econstructor; eauto.
per_univ_elem_right_irrel_assert.
apply_relation_equivalence.
eassumption.
+ apply_relation_equivalence.
intros.
assert (in_rel c' c) by eauto.
assert (in_rel c c) by (etransitivity; eassumption).
destruct_rel_mod_eval.
destruct_rel_mod_app.
functional_eval_rewrite_clear.
econstructor; eauto.
per_univ_elem_right_irrel_assert.
intuition.
- destruct_conjs.
split; [basic_per_univ_elem_econstructor | apply_relation_equivalence]; mauto 3.
apply_relation_equivalence.
etransitivity; [apply per_eq_morphism_relation_equivalence2 | apply per_eq_morphism_relation_equivalence3]; mauto 3.
- split; [econstructor | intros; apply_relation_equivalence]...
Qed.
Corollary per_univ_sym : forall i R a b,
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ DF b ≈ a ∈ per_univ_elem i ↘ R }}.
Proof.
intros * ?%per_univ_elem_sym.
firstorder.
Qed.
Corollary per_univ_sym' : forall i a b,
{{ Dom a ≈ b ∈ per_univ i }} ->
{{ Dom b ≈ a ∈ per_univ i }}.
Proof.
intros * [? ?%per_univ_elem_sym].
firstorder.
Qed.
Corollary per_elem_sym : forall i R a b m m',
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ Dom m ≈ m' ∈ R }} ->
{{ Dom m' ≈ m ∈ R }}.
Proof.
intros * ?%per_univ_elem_sym.
firstorder.
Qed.
Corollary per_univ_elem_left_irrel : forall i i' R a b R' a',
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ DF a' ≈ b ∈ per_univ_elem i' ↘ R' }} ->
(R <~> R').
Proof.
intros * ?%per_univ_sym ?%per_univ_sym.
eauto using per_univ_elem_right_irrel.
Qed.
Corollary per_univ_elem_cross_irrel : forall i i' R a b R' b',
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ DF b' ≈ a ∈ per_univ_elem i' ↘ R' }} ->
(R <~> R').
Proof.
intros * ? ?%per_univ_sym.
eauto using per_univ_elem_right_irrel.
Qed.
Ltac do_per_univ_elem_irrel_assert1 :=
let tactic_error o1 o2 := fail 2 "per_univ_elem_irrel biconditional between" o1 "and" o2 "cannot be solved" in
match goal with
| H1 : {{ DF ^?a ≈ ^_ ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ^?a ≈ ^_ ∈ per_univ_elem ?i' ↘ ?R2 }} |- _ =>
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_univ_elem_right_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
| H1 : {{ DF ^_ ≈ ^?b ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ^_ ≈ ^?b ∈ per_univ_elem ?i' ↘ ?R2 }} |- _ =>
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_univ_elem_left_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
| H1 : {{ DF ^?a ≈ ^_ ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ^_ ≈ ^?a ∈ per_univ_elem ?i' ↘ ?R2 }} |- _ =>
From Equations Require Import Equations.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Import PER.CoreTactics PER.Definitions.
Import Domain_Notations.
Add Parametric Morphism R0 `(R0_morphism : Proper _ ((@relation_equivalence domain) ==> (@relation_equivalence domain)) R0) A ρ A' ρ' : (rel_mod_eval R0 A ρ A' ρ')
with signature (@relation_equivalence domain) ==> iff as rel_mod_eval_morphism.
Proof.
split; intros []; econstructor; try eassumption;
[> eapply R0_morphism; [symmetry + idtac |]; eassumption ..].
Qed.
Add Parametric Morphism f a f' a' : (rel_mod_app f a f' a')
with signature (@relation_equivalence domain) ==> iff as rel_mod_app_morphism.
Proof.
intros * HRR'.
split; intros []; econstructor; try eassumption;
apply HRR'; eassumption.
Qed.
Lemma per_bot_sym : forall m n,
{{ Dom m ≈ n ∈ per_bot }} ->
{{ Dom n ≈ m ∈ per_bot }}.
Proof with solve [eauto].
intros * H s.
pose proof H s.
destruct_conjs...
Qed.
#[export]
Hint Resolve per_bot_sym : mctt.
Lemma per_bot_trans : forall m n l,
{{ Dom m ≈ n ∈ per_bot }} ->
{{ Dom n ≈ l ∈ per_bot }} ->
{{ Dom m ≈ l ∈ per_bot }}.
Proof with solve [eauto].
intros * Hmn Hnl s.
pose proof (Hmn s, Hnl s).
destruct_conjs.
functional_read_rewrite_clear...
Qed.
#[export]
Hint Resolve per_bot_trans : mctt.
#[export]
Instance per_bot_PER : PER per_bot.
Proof.
split.
- eauto using per_bot_sym.
- eauto using per_bot_trans.
Qed.
Lemma var_per_bot : forall {n},
{{ Dom !n ≈ !n ∈ per_bot }}.
Proof.
intros ? ?. repeat econstructor.
Qed.
#[export]
Hint Resolve var_per_bot : mctt.
Lemma per_top_sym : forall m n,
{{ Dom m ≈ n ∈ per_top }} ->
{{ Dom n ≈ m ∈ per_top }}.
Proof with solve [eauto].
intros * H s.
pose proof H s.
destruct_conjs...
Qed.
#[export]
Hint Resolve per_top_sym : mctt.
Lemma per_top_trans : forall m n l,
{{ Dom m ≈ n ∈ per_top }} ->
{{ Dom n ≈ l ∈ per_top }} ->
{{ Dom m ≈ l ∈ per_top }}.
Proof with solve [eauto].
intros * Hmn Hnl s.
pose proof (Hmn s, Hnl s).
destruct_conjs.
functional_read_rewrite_clear...
Qed.
#[export]
Hint Resolve per_top_trans : mctt.
#[export]
Instance per_top_PER : PER per_top.
Proof.
split.
- eauto using per_top_sym.
- eauto using per_top_trans.
Qed.
Lemma per_bot_then_per_top : forall m m' a a' b b' c c',
{{ Dom m ≈ m' ∈ per_bot }} ->
{{ Dom ⇓ (⇑ a b) ⇑ c m ≈ ⇓ (⇑ a' b') ⇑ c' m' ∈ per_top }}.
Proof.
intros * H s.
pose proof H s.
destruct_conjs.
eexists; split; constructor; eassumption.
Qed.
#[export]
Hint Resolve per_bot_then_per_top : mctt.
Lemma per_top_typ_sym : forall m n,
{{ Dom m ≈ n ∈ per_top_typ }} ->
{{ Dom n ≈ m ∈ per_top_typ }}.
Proof with solve [eauto].
intros * H s.
pose proof H s.
destruct_conjs...
Qed.
#[export]
Hint Resolve per_top_typ_sym : mctt.
Lemma per_top_typ_trans : forall m n l,
{{ Dom m ≈ n ∈ per_top_typ }} ->
{{ Dom n ≈ l ∈ per_top_typ }} ->
{{ Dom m ≈ l ∈ per_top_typ }}.
Proof with solve [eauto].
intros * Hmn Hnl s.
pose proof (Hmn s, Hnl s).
destruct_conjs.
functional_read_rewrite_clear...
Qed.
#[export]
Hint Resolve per_top_typ_trans : mctt.
#[export]
Instance per_top_typ_PER : PER per_top_typ.
Proof.
split.
- eauto using per_top_typ_sym.
- eauto using per_top_typ_trans.
Qed.
Lemma per_nat_sym : forall m n,
{{ Dom m ≈ n ∈ per_nat }} ->
{{ Dom n ≈ m ∈ per_nat }}.
Proof with mautosolve.
induction 1; econstructor...
Qed.
#[export]
Hint Resolve per_nat_sym : mctt.
Lemma per_nat_trans : forall m n l,
{{ Dom m ≈ n ∈ per_nat }} ->
{{ Dom n ≈ l ∈ per_nat }} ->
{{ Dom m ≈ l ∈ per_nat }}.
Proof with mautosolve.
intros * H. gen l.
induction H; inversion_clear 1; econstructor...
Qed.
#[export]
Hint Resolve per_nat_trans : mctt.
#[export]
Instance per_nat_PER : PER per_nat.
Proof.
split.
- eauto using per_nat_sym.
- eauto using per_nat_trans.
Qed.
Lemma per_eq_sym : forall point_rel m1 m2 n n',
PER point_rel ->
{{ Dom n ≈ n' ∈ per_eq point_rel m1 m2 }} ->
{{ Dom n' ≈ n ∈ per_eq point_rel m1 m2 }}.
Proof with mautosolve 3.
intros * [] []; econstructor...
Qed.
#[export]
Hint Resolve per_eq_sym : mctt.
Lemma per_eq_trans : forall point_rel m1 m2 n n' n'',
PER point_rel ->
{{ Dom n ≈ n' ∈ per_eq point_rel m1 m2 }} ->
{{ Dom n' ≈ n'' ∈ per_eq point_rel m1 m2 }} ->
{{ Dom n ≈ n'' ∈ per_eq point_rel m1 m2 }}.
Proof with mautosolve 3.
intros * [] [];
inversion_clear 1;
econstructor...
Qed.
#[export]
Hint Resolve per_eq_trans : mctt.
#[export]
Instance per_eq_PER {point_rel m1 m2} {Hpoint : PER point_rel} : PER (per_eq point_rel m1 m2).
Proof.
split.
- eauto using per_eq_sym.
- eauto using per_eq_trans.
Qed.
Add Parametric Morphism : per_eq
with signature (@relation_equivalence domain) ==> eq ==> eq ==> eq ==> eq ==> iff as per_eq_morphism_iff1.
Proof with solve [intuition].
simpl.
intros R R' HRR'.
split; intros []; econstructor; eauto...
Qed.
Add Parametric Morphism : per_eq
with signature (@relation_equivalence domain) ==> eq ==> eq ==> (@relation_equivalence domain) as per_eq_morphism_relation_equivalence1.
Proof with solve [intuition].
simpl.
intros * H ? ? ? ?.
simpl.
rewrite H.
reflexivity.
Qed.
Add Parametric Morphism point_rel (HPER : PER point_rel) : (per_eq point_rel)
with signature point_rel ==> eq ==> eq ==> eq ==> iff as per_eq_morphism_iff2.
Proof with solve [intuition].
simpl.
intros m1 m1' Hm1m1'.
split; intros []; econstructor; eauto; etransitivity...
Qed.
Add Parametric Morphism point_rel (HPER : PER point_rel) : (per_eq point_rel)
with signature point_rel ==> eq ==> (@relation_equivalence domain) as per_eq_morphism_relation_equivalence2.
Proof with solve [intuition].
simpl.
intros * H ? ? ?.
simpl.
rewrite H.
reflexivity.
Qed.
Add Parametric Morphism point_rel (HPER : PER point_rel) m1 : (per_eq point_rel m1)
with signature point_rel ==> eq ==> eq ==> iff as per_eq_morphism_iff3.
Proof with solve [intuition].
simpl.
intros m2 m2' Hm2m2'.
split; intros []; econstructor; eauto; etransitivity...
Qed.
Add Parametric Morphism point_rel (HPER : PER point_rel) m1 : (per_eq point_rel m1)
with signature point_rel ==> (@relation_equivalence domain) as per_eq_morphism_relation_equivalence3.
Proof with solve [intuition].
simpl.
intros * H ? ?.
simpl.
rewrite H.
reflexivity.
Qed.
Lemma per_ne_sym : forall m n,
{{ Dom m ≈ n ∈ per_ne }} ->
{{ Dom n ≈ m ∈ per_ne }}.
Proof with mautosolve.
intros * [].
econstructor...
Qed.
#[export]
Hint Resolve per_ne_sym : mctt.
Lemma per_ne_trans : forall m n l,
{{ Dom m ≈ n ∈ per_ne }} ->
{{ Dom n ≈ l ∈ per_ne }} ->
{{ Dom m ≈ l ∈ per_ne }}.
Proof with mautosolve.
intros * [].
inversion_clear 1.
econstructor...
Qed.
#[export]
Hint Resolve per_ne_trans : mctt.
#[export]
Instance per_ne_PER : PER per_ne.
Proof.
split.
- eauto using per_ne_sym.
- eauto using per_ne_trans.
Qed.
Add Parametric Morphism i : (per_univ_elem i)
with signature (@relation_equivalence domain) ==> eq ==> eq ==> iff as per_univ_elem_morphism_iff.
Proof with mautosolve.
simpl.
intros R R' HRR'.
split; intros Horig; [gen R' | gen R];
induction Horig using per_univ_elem_ind; basic_per_univ_elem_econstructor; eauto;
try (etransitivity; [symmetry + idtac|]; eassumption);
intros;
destruct_rel_mod_eval;
econstructor...
Qed.
Add Parametric Morphism i : (per_univ_elem i)
with signature (@relation_equivalence domain) ==> (@relation_equivalence domain) as per_univ_elem_morphism_relation_equivalence.
Proof with mautosolve.
intros * H ? ?.
simpl.
rewrite H.
reflexivity.
Qed.
Add Parametric Morphism i A ρ A' ρ' : (rel_typ i A ρ A' ρ')
with signature (@relation_equivalence domain) ==> iff as rel_typ_morphism.
Proof.
intros * HRR'.
split; intros []; econstructor; try eassumption;
[setoid_rewrite <- HRR' | setoid_rewrite HRR']; eassumption.
Qed.
Lemma domain_app_per : forall f f' a a',
{{ Dom f ≈ f' ∈ per_bot }} ->
{{ Dom a ≈ a' ∈ per_top }} ->
{{ Dom f a ≈ f' a' ∈ per_bot }}.
Proof.
intros. intros s.
destruct (H s) as [? []].
destruct (H0 s) as [? []].
mauto.
Qed.
Ltac rewrite_relation_equivalence_left :=
repeat match goal with
| H : ?R1 <~> ?R2 |- _ =>
try setoid_rewrite H;
(on_all_hyp: fun H' => assert_fails (unify H H'); unmark H; setoid_rewrite H in H');
let T := type of H in
fold (id T) in H
end; unfold id in *.
Ltac rewrite_relation_equivalence_right :=
repeat match goal with
| H : ?R1 <~> ?R2 |- _ =>
try setoid_rewrite <- H;
(on_all_hyp: fun H' => assert_fails (unify H H'); unmark H; setoid_rewrite <- H in H');
let T := type of H in
fold (id T) in H
end; unfold id in *.
Ltac clear_relation_equivalence :=
repeat match goal with
| H : ?R1 <~> ?R2 |- _ =>
(unify R1 R2; clear H) + (is_var R1; clear R1 H) + (is_var R2; clear R2 H)
end.
Ltac apply_relation_equivalence :=
clear_relation_equivalence;
rewrite_relation_equivalence_right;
clear_relation_equivalence;
rewrite_relation_equivalence_left;
clear_relation_equivalence.
Lemma per_univ_elem_right_irrel : forall i i' R a b R' b',
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ DF a ≈ b' ∈ per_univ_elem i' ↘ R' }} ->
(R <~> R').
Proof with (destruct_rel_mod_eval; destruct_rel_mod_app; functional_eval_rewrite_clear; econstructor; intuition).
simpl.
intros * Horig.
remember a as a' in |- *.
gen a' b' R'.
induction Horig using per_univ_elem_ind; intros * Heq Hright;
subst; basic_invert_per_univ_elem Hright; unfold per_univ;
intros;
apply_relation_equivalence;
try reflexivity.
specialize (IHHorig _ _ _ eq_refl equiv_a_a').
split; intros.
- rename equiv_c_c' into equiv0_c_c'.
assert (equiv_c_c' : in_rel c c') by firstorder...
- assert (equiv0_c_c' : in_rel0 c c') by firstorder...
- assert (point_rel <~> point_rel0) by mauto 3.
etransitivity; [apply per_eq_morphism_relation_equivalence3 | apply per_eq_morphism_relation_equivalence1]; eauto.
etransitivity; [symmetry |]; intuition.
Qed.
#[local]
Ltac per_univ_elem_right_irrel_assert1 :=
match goal with
| H1 : {{ DF ^?a ≈ ^?b ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ^?a ≈ ^?b' ∈ per_univ_elem ?i' ↘ ?R2 }} |- _ =>
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_univ_elem_right_irrel; [apply H1 | apply H2])
end
end.
#[local]
Ltac per_univ_elem_right_irrel_assert := repeat per_univ_elem_right_irrel_assert1.
Lemma per_univ_elem_sym : forall i R a b,
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ DF b ≈ a ∈ per_univ_elem i ↘ R }} /\
(forall m m',
{{ Dom m ≈ m' ∈ R }} ->
{{ Dom m' ≈ m ∈ R }}).
Proof with mautosolve.
simpl.
induction 1 using per_univ_elem_ind; subst.
- split.
+ apply per_univ_elem_core_univ'; firstorder.
+ intros.
rewrite H1 in *.
destruct_by_head per_univ.
eexists.
eapply proj1...
- split; [basic_per_univ_elem_econstructor | intros; apply_relation_equivalence]...
- destruct_conjs.
split.
+ basic_per_univ_elem_econstructor; eauto.
intros.
assert (in_rel c' c) by eauto.
assert (in_rel c c) by (etransitivity; eassumption).
destruct_rel_mod_eval.
functional_eval_rewrite_clear.
econstructor; eauto.
per_univ_elem_right_irrel_assert.
apply_relation_equivalence.
eassumption.
+ apply_relation_equivalence.
intros.
assert (in_rel c' c) by eauto.
assert (in_rel c c) by (etransitivity; eassumption).
destruct_rel_mod_eval.
destruct_rel_mod_app.
functional_eval_rewrite_clear.
econstructor; eauto.
per_univ_elem_right_irrel_assert.
intuition.
- destruct_conjs.
split; [basic_per_univ_elem_econstructor | apply_relation_equivalence]; mauto 3.
apply_relation_equivalence.
etransitivity; [apply per_eq_morphism_relation_equivalence2 | apply per_eq_morphism_relation_equivalence3]; mauto 3.
- split; [econstructor | intros; apply_relation_equivalence]...
Qed.
Corollary per_univ_sym : forall i R a b,
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ DF b ≈ a ∈ per_univ_elem i ↘ R }}.
Proof.
intros * ?%per_univ_elem_sym.
firstorder.
Qed.
Corollary per_univ_sym' : forall i a b,
{{ Dom a ≈ b ∈ per_univ i }} ->
{{ Dom b ≈ a ∈ per_univ i }}.
Proof.
intros * [? ?%per_univ_elem_sym].
firstorder.
Qed.
Corollary per_elem_sym : forall i R a b m m',
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ Dom m ≈ m' ∈ R }} ->
{{ Dom m' ≈ m ∈ R }}.
Proof.
intros * ?%per_univ_elem_sym.
firstorder.
Qed.
Corollary per_univ_elem_left_irrel : forall i i' R a b R' a',
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ DF a' ≈ b ∈ per_univ_elem i' ↘ R' }} ->
(R <~> R').
Proof.
intros * ?%per_univ_sym ?%per_univ_sym.
eauto using per_univ_elem_right_irrel.
Qed.
Corollary per_univ_elem_cross_irrel : forall i i' R a b R' b',
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ DF b' ≈ a ∈ per_univ_elem i' ↘ R' }} ->
(R <~> R').
Proof.
intros * ? ?%per_univ_sym.
eauto using per_univ_elem_right_irrel.
Qed.
Ltac do_per_univ_elem_irrel_assert1 :=
let tactic_error o1 o2 := fail 2 "per_univ_elem_irrel biconditional between" o1 "and" o2 "cannot be solved" in
match goal with
| H1 : {{ DF ^?a ≈ ^_ ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ^?a ≈ ^_ ∈ per_univ_elem ?i' ↘ ?R2 }} |- _ =>
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_univ_elem_right_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
| H1 : {{ DF ^_ ≈ ^?b ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ^_ ≈ ^?b ∈ per_univ_elem ?i' ↘ ?R2 }} |- _ =>
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_univ_elem_left_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
| H1 : {{ DF ^?a ≈ ^_ ∈ per_univ_elem ?i ↘ ?R1 }},
H2 : {{ DF ^_ ≈ ^?a ∈ per_univ_elem ?i' ↘ ?R2 }} |- _ =>
Order matters less here as H1 and H2 cannot be exchanged
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_univ_elem_cross_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
end.
Ltac do_per_univ_elem_irrel_assert :=
repeat do_per_univ_elem_irrel_assert1.
Ltac handle_per_univ_elem_irrel :=
functional_eval_rewrite_clear;
do_per_univ_elem_irrel_assert;
apply_relation_equivalence;
clear_dups.
Lemma per_univ_elem_trans : forall i R a1 a2,
per_univ_elem i R a1 a2 ->
(forall j a3,
per_univ_elem j R a2 a3 ->
per_univ_elem i R a1 a3) /\
(forall m1 m2 m3,
R m1 m2 ->
R m2 m3 ->
R m1 m3).
Proof with (basic_per_univ_elem_econstructor; mautosolve 4).
induction 1 using per_univ_elem_ind;
[> split;
[ intros * HT2; basic_invert_per_univ_elem HT2
| intros * HTR1 HTR2; apply_relation_equivalence ] ..]; mauto.
- (* univ case *)
subst.
destruct HTR1, HTR2.
functional_eval_rewrite_clear.
handle_per_univ_elem_irrel.
eexists.
specialize (H2 _ _ _ H0) as [].
intuition.
- (* nat case *)
idtac...
- (* pi case *)
destruct_conjs.
basic_per_univ_elem_econstructor; eauto.
+ handle_per_univ_elem_irrel.
intuition.
+ intros.
handle_per_univ_elem_irrel.
assert (in_rel c c') by firstorder.
assert (in_rel c c) by intuition.
assert (in_rel0 c c) by intuition.
destruct_rel_mod_eval.
functional_eval_rewrite_clear.
handle_per_univ_elem_irrel...
- (* fun case *)
intros.
assert (in_rel c c) by intuition.
destruct_rel_mod_eval.
destruct_rel_mod_app.
handle_per_univ_elem_irrel.
econstructor; eauto.
intuition.
- (* eq case *)
destruct_conjs.
handle_per_univ_elem_irrel.
basic_per_univ_elem_econstructor; intuition.
bulky_rewrite1.
reflexivity.
- (* neut case *)
idtac...
Qed.
Corollary per_univ_trans : forall i j R a1 a2 a3,
per_univ_elem i R a1 a2 ->
per_univ_elem j R a2 a3 ->
per_univ_elem i R a1 a3.
Proof.
intros * ?%per_univ_elem_trans.
firstorder.
Qed.
Corollary per_univ_trans' : forall i j a1 a2 a3,
{{ Dom a1 ≈ a2 ∈ per_univ i }} ->
{{ Dom a2 ≈ a3 ∈ per_univ j }} ->
{{ Dom a1 ≈ a3 ∈ per_univ i }}.
Proof.
intros * [? ?] [? ?].
handle_per_univ_elem_irrel.
firstorder mauto using per_univ_trans.
Qed.
Corollary per_elem_trans : forall i R a1 a2 m1 m2 m3,
per_univ_elem i R a1 a2 ->
R m1 m2 ->
R m2 m3 ->
R m1 m3.
Proof.
intros * ?% per_univ_elem_trans.
firstorder.
Qed.
#[export]
Instance per_univ_PER {i R} : PER (per_univ_elem i R).
Proof.
split.
- auto using per_univ_sym.
- eauto using per_univ_trans.
Qed.
#[export]
Instance per_univ_PER' {i} : PER (per_univ i).
Proof.
split.
- auto using per_univ_sym'.
- eauto using per_univ_trans'.
Qed.
#[export]
Instance per_elem_PER {i R a b} `(H : per_univ_elem i R a b) : PER R.
Proof.
split.
- pose proof (fun m m' => per_elem_sym _ _ _ _ m m' H). eauto.
- pose proof (fun m0 m1 m2 => per_elem_trans _ _ _ _ m0 m1 m2 H); eauto.
Qed.
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_univ_elem_cross_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
end.
Ltac do_per_univ_elem_irrel_assert :=
repeat do_per_univ_elem_irrel_assert1.
Ltac handle_per_univ_elem_irrel :=
functional_eval_rewrite_clear;
do_per_univ_elem_irrel_assert;
apply_relation_equivalence;
clear_dups.
Lemma per_univ_elem_trans : forall i R a1 a2,
per_univ_elem i R a1 a2 ->
(forall j a3,
per_univ_elem j R a2 a3 ->
per_univ_elem i R a1 a3) /\
(forall m1 m2 m3,
R m1 m2 ->
R m2 m3 ->
R m1 m3).
Proof with (basic_per_univ_elem_econstructor; mautosolve 4).
induction 1 using per_univ_elem_ind;
[> split;
[ intros * HT2; basic_invert_per_univ_elem HT2
| intros * HTR1 HTR2; apply_relation_equivalence ] ..]; mauto.
- (* univ case *)
subst.
destruct HTR1, HTR2.
functional_eval_rewrite_clear.
handle_per_univ_elem_irrel.
eexists.
specialize (H2 _ _ _ H0) as [].
intuition.
- (* nat case *)
idtac...
- (* pi case *)
destruct_conjs.
basic_per_univ_elem_econstructor; eauto.
+ handle_per_univ_elem_irrel.
intuition.
+ intros.
handle_per_univ_elem_irrel.
assert (in_rel c c') by firstorder.
assert (in_rel c c) by intuition.
assert (in_rel0 c c) by intuition.
destruct_rel_mod_eval.
functional_eval_rewrite_clear.
handle_per_univ_elem_irrel...
- (* fun case *)
intros.
assert (in_rel c c) by intuition.
destruct_rel_mod_eval.
destruct_rel_mod_app.
handle_per_univ_elem_irrel.
econstructor; eauto.
intuition.
- (* eq case *)
destruct_conjs.
handle_per_univ_elem_irrel.
basic_per_univ_elem_econstructor; intuition.
bulky_rewrite1.
reflexivity.
- (* neut case *)
idtac...
Qed.
Corollary per_univ_trans : forall i j R a1 a2 a3,
per_univ_elem i R a1 a2 ->
per_univ_elem j R a2 a3 ->
per_univ_elem i R a1 a3.
Proof.
intros * ?%per_univ_elem_trans.
firstorder.
Qed.
Corollary per_univ_trans' : forall i j a1 a2 a3,
{{ Dom a1 ≈ a2 ∈ per_univ i }} ->
{{ Dom a2 ≈ a3 ∈ per_univ j }} ->
{{ Dom a1 ≈ a3 ∈ per_univ i }}.
Proof.
intros * [? ?] [? ?].
handle_per_univ_elem_irrel.
firstorder mauto using per_univ_trans.
Qed.
Corollary per_elem_trans : forall i R a1 a2 m1 m2 m3,
per_univ_elem i R a1 a2 ->
R m1 m2 ->
R m2 m3 ->
R m1 m3.
Proof.
intros * ?% per_univ_elem_trans.
firstorder.
Qed.
#[export]
Instance per_univ_PER {i R} : PER (per_univ_elem i R).
Proof.
split.
- auto using per_univ_sym.
- eauto using per_univ_trans.
Qed.
#[export]
Instance per_univ_PER' {i} : PER (per_univ i).
Proof.
split.
- auto using per_univ_sym'.
- eauto using per_univ_trans'.
Qed.
#[export]
Instance per_elem_PER {i R a b} `(H : per_univ_elem i R a b) : PER R.
Proof.
split.
- pose proof (fun m m' => per_elem_sym _ _ _ _ m m' H). eauto.
- pose proof (fun m0 m1 m2 => per_elem_trans _ _ _ _ m0 m1 m2 H); eauto.
Qed.
These lemmas get rid of the unnecessary PER premises.
Lemma per_univ_elem_pi' :
forall i a a' ρ B ρ' B'
(in_rel : relation domain)
(out_rel : forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), relation domain)
elem_rel,
{{ DF a ≈ a' ∈ per_univ_elem i ↘ in_rel}} ->
(forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}),
rel_mod_eval (per_univ_elem i) B d{{{ ρ ↦ c }}} B' d{{{ ρ' ↦ c' }}} (out_rel equiv_c_c')) ->
(elem_rel <~> fun f f' => forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app f c f' c' (out_rel equiv_c_c')) ->
{{ DF Π a ρ B ≈ Π a' ρ' B' ∈ per_univ_elem i ↘ elem_rel }}.
Proof.
intros.
basic_per_univ_elem_econstructor; eauto.
typeclasses eauto.
Qed.
Lemma per_univ_elem_eq' :
forall (i : nat) {a a' m1 m1' m2 m2' : domain} (point_rel elem_rel : relation domain),
{{ DF a ≈ a' ∈ per_univ_elem i ↘ point_rel }} ->
{{ Dom m1 ≈ m1' ∈ point_rel }} ->
{{ Dom m2 ≈ m2' ∈ point_rel }} ->
elem_rel <~> per_eq point_rel m1 m2' ->
{{ DF Eq a m1 m2 ≈ Eq a' m1' m2' ∈ per_univ_elem i ↘ elem_rel }}.
Proof.
intros.
basic_per_univ_elem_econstructor; eauto.
typeclasses eauto.
Qed.
Ltac per_univ_elem_econstructor :=
(repeat intro; hnf; (eapply per_univ_elem_pi' || eapply per_univ_elem_eq')) + basic_per_univ_elem_econstructor.
#[export]
Hint Resolve per_univ_elem_pi' per_univ_elem_eq' : mctt.
Lemma per_univ_elem_pi_clean_inversion : forall {i j a a' in_rel ρ ρ' B B' elem_rel},
{{ DF a ≈ a' ∈ per_univ_elem i ↘ in_rel }} ->
{{ DF Π a ρ B ≈ Π a' ρ' B' ∈ per_univ_elem j ↘ elem_rel }} ->
exists (out_rel : forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), relation domain),
(forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}),
rel_mod_eval (per_univ_elem j) B d{{{ ρ ↦ c }}} B' d{{{ ρ' ↦ c' }}} (out_rel equiv_c_c')) /\
(elem_rel <~> fun f f' => forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app f c f' c' (out_rel equiv_c_c')).
Proof.
intros * Ha HΠ.
basic_invert_per_univ_elem HΠ.
handle_per_univ_elem_irrel.
eexists.
split.
- instantiate (1 := fun c c' (equiv_c_c' : in_rel c c') m m' =>
forall R,
rel_typ j B d{{{ ρ ↦ c }}} B' d{{{ ρ' ↦ c' }}} R ->
R m m').
intros.
assert (in_rel0 c c') by intuition.
(on_all_hyp: destruct_rel_by_assumption in_rel0).
econstructor; eauto.
apply -> per_univ_elem_morphism_iff; eauto.
split; intuition.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
intuition.
- split; intros;
[assert (in_rel0 c c') by intuition; (on_all_hyp: destruct_rel_by_assumption in_rel0)
| assert (in_rel c c') by intuition; (on_all_hyp: destruct_rel_by_assumption in_rel)];
econstructor; intuition.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
intuition.
Qed.
Ltac invert_per_univ_elem H :=
(unshelve eapply (per_univ_elem_pi_clean_inversion _) in H; shelve_unifiable; [eassumption |]; destruct H as [? []])
+ basic_invert_per_univ_elem H.
Ltac invert_per_univ_elems := match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
Lemma per_univ_elem_cumu : forall i a0 a1 R,
{{ DF a0 ≈ a1 ∈ per_univ_elem i ↘ R }} ->
{{ DF a0 ≈ a1 ∈ per_univ_elem (S i) ↘ R }}.
Proof with solve [eauto].
simpl.
induction 1 using per_univ_elem_ind; subst;
per_univ_elem_econstructor; eauto.
intros.
destruct_rel_mod_eval.
econstructor...
Qed.
#[export]
Hint Resolve per_univ_elem_cumu : mctt.
Lemma per_univ_elem_cumu_ge : forall i i' a0 a1 R,
i <= i' ->
{{ DF a0 ≈ a1 ∈ per_univ_elem i ↘ R }} ->
{{ DF a0 ≈ a1 ∈ per_univ_elem i' ↘ R }}.
Proof with mautosolve.
induction 1...
Qed.
#[export]
Hint Resolve per_univ_elem_cumu_ge : mctt.
Lemma per_univ_elem_cumu_max_left : forall i j a0 a1 R,
{{ DF a0 ≈ a1 ∈ per_univ_elem i ↘ R }} ->
{{ DF a0 ≈ a1 ∈ per_univ_elem (max i j) ↘ R }}.
Proof with mautosolve.
intros.
assert (i <= max i j) by lia...
Qed.
Lemma per_univ_elem_cumu_max_right : forall i j a0 a1 R,
{{ DF a0 ≈ a1 ∈ per_univ_elem j ↘ R }} ->
{{ DF a0 ≈ a1 ∈ per_univ_elem (max i j) ↘ R }}.
Proof with mautosolve.
intros.
assert (j <= max i j) by lia...
Qed.
Lemma per_subtyp_to_univ_elem : forall a b i,
{{ Sub a <: b at i }} ->
exists R R',
{{ DF a ≈ a ∈ per_univ_elem i ↘ R }} /\
{{ DF b ≈ b ∈ per_univ_elem i ↘ R' }}.
Proof.
destruct 1; do 2 eexists; mauto;
split;
try (etransitivity; try eassumption; symmetry; eassumption);
per_univ_elem_econstructor; mauto 3;
try apply Equivalence_Reflexive.
lia.
Qed.
Lemma per_elem_subtyping : forall A B i,
{{ Sub A <: B at i }} ->
forall R R' a b,
{{ DF A ≈ A ∈ per_univ_elem i ↘ R }} ->
{{ DF B ≈ B ∈ per_univ_elem i ↘ R' }} ->
R a b ->
R' a b.
Proof.
induction 1; intros;
handle_per_univ_elem_irrel;
saturate_refl;
invert_per_univ_elems;
handle_per_univ_elem_irrel;
clear_refl_eqs;
trivial.
- firstorder mauto.
- intros.
handle_per_univ_elem_irrel.
destruct_rel_mod_eval.
saturate_refl_for per_univ_elem.
destruct_rel_mod_app.
simplify_evals.
econstructor; eauto.
intuition.
Qed.
Lemma per_elem_subtyping_gen : forall a b i a' b' R R' m n,
{{ Sub a <: b at i }} ->
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ DF b ≈ b' ∈ per_univ_elem i ↘ R' }} ->
R m n ->
R' m n.
Proof.
intros.
eapply per_elem_subtyping; saturate_refl; try eassumption.
Qed.
Lemma per_subtyp_refl1 : forall a b i R,
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ Sub a <: b at i }}.
Proof.
simpl; induction 1 using per_univ_elem_ind;
subst;
mauto;
destruct_all.
assert ({{ DF Π a ρ B ≈ Π a' ρ' B' ∈ per_univ_elem i ↘ elem_rel }})
by (per_univ_elem_econstructor; intuition; destruct_rel_mod_eval; mauto).
saturate_refl_for per_univ_elem.
econstructor; eauto.
intros;
destruct_rel_mod_eval;
functional_eval_rewrite_clear;
trivial.
Qed.
#[export]
Hint Resolve per_subtyp_refl1 : mctt.
Lemma per_subtyp_refl2 : forall a b i R,
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ Sub b <: a at i }}.
Proof.
intros.
symmetry in H.
eauto using per_subtyp_refl1.
Qed.
#[export]
Hint Resolve per_subtyp_refl2 : mctt.
Lemma per_subtyp_trans : forall a1 a2 i,
{{ Sub a1 <: a2 at i }} ->
forall a3,
{{ Sub a2 <: a3 at i }} ->
{{ Sub a1 <: a3 at i }}.
Proof.
induction 1; intros ? Hsub; simpl in *.
1,2,5: progressive_inversion; mauto.
- econstructor; lia.
- dependent destruction Hsub.
handle_per_univ_elem_irrel.
econstructor; eauto.
+ etransitivity; eassumption.
+ intros.
invert_per_univ_elems.
handle_per_univ_elem_irrel.
saturate_refl_for in_rel1.
destruct_rel_mod_eval.
intuition.
- dependent destruction Hsub.
handle_per_univ_elem_irrel.
econstructor; etransitivity; eauto.
Qed.
#[export]
Hint Resolve per_subtyp_trans : mctt.
#[export]
Instance per_subtyp_trans_ins i : Transitive (per_subtyp i).
Proof.
eauto using per_subtyp_trans.
Qed.
Lemma per_subtyp_transp : forall a b i a' b' R R',
{{ Sub a <: b at i }} ->
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ DF b ≈ b' ∈ per_univ_elem i ↘ R' }} ->
{{ Sub a' <: b' at i }}.
Proof.
mauto using per_subtyp_refl1, per_subtyp_refl2.
Qed.
Lemma per_subtyp_cumu : forall a1 a2 i,
{{ Sub a1 <: a2 at i }} ->
forall j,
i <= j ->
{{ Sub a1 <: a2 at j }}.
Proof.
induction 1; intros; econstructor; mauto.
lia.
Qed.
#[export]
Hint Resolve per_subtyp_cumu : mctt.
Lemma per_subtyp_cumu_left : forall a1 a2 i j,
{{ Sub a1 <: a2 at i }} ->
{{ Sub a1 <: a2 at max i j }}.
Proof.
intros. eapply per_subtyp_cumu; try eassumption.
lia.
Qed.
Lemma per_subtyp_cumu_right : forall a1 a2 i j,
{{ Sub a1 <: a2 at i }} ->
{{ Sub a1 <: a2 at max j i }}.
Proof.
intros. eapply per_subtyp_cumu; try eassumption.
lia.
Qed.
Add Parametric Morphism : per_ctx_env
with signature (@relation_equivalence env) ==> eq ==> eq ==> iff as per_ctx_env_morphism_iff.
Proof with mautosolve.
intros R R' HRR'.
split; intro Horig; [gen R' | gen R];
induction Horig; econstructor;
apply_relation_equivalence; try reflexivity...
Qed.
Add Parametric Morphism : per_ctx_env
with signature (@relation_equivalence env) ==> (@relation_equivalence ctx) as per_ctx_env_morphism_relation_equivalence.
Proof.
intros * HRR' Γ Γ'.
simpl.
rewrite HRR'.
reflexivity.
Qed.
Lemma per_ctx_env_right_irrel : forall Γ Δ Δ' R R',
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ DF Γ ≈ Δ' ∈ per_ctx_env ↘ R' }} ->
R <~> R'.
Proof with (destruct_rel_typ; handle_per_univ_elem_irrel; eexists; intuition).
intros * Horig; gen Δ' R'.
induction Horig; intros * Hright;
inversion Hright; subst;
apply_relation_equivalence;
try reflexivity.
specialize (IHHorig _ _ equiv_Γ_Γ'0).
intros ρ ρ'.
split; intros Hcons; dependent destruction Hcons.
- assert {{ Dom ρ ↯ ≈ ρ' ↯ ∈ tail_rel0 }} by intuition...
- assert {{ Dom ρ ↯ ≈ ρ' ↯ ∈ tail_rel }} by intuition...
Qed.
Lemma per_ctx_env_sym : forall Γ Δ R,
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ DF Δ ≈ Γ ∈ per_ctx_env ↘ R }} /\
(forall ρ ρ',
{{ Dom ρ ≈ ρ' ∈ R }} ->
{{ Dom ρ' ≈ ρ ∈ R }}).
Proof with solve [intuition].
simpl.
induction 1; split; simpl in *; destruct_conjs; try econstructor; intuition;
pose proof (@relation_equivalence_pointwise env).
- assert (tail_rel ρ' ρ) by eauto.
assert (tail_rel ρ ρ) by (etransitivity; eassumption).
destruct_rel_mod_eval.
handle_per_univ_elem_irrel.
econstructor; eauto.
symmetry...
- apply_relation_equivalence.
destruct_by_head cons_per_ctx_env.
assert (tail_rel d{{{ ρ' ↯ }}} d{{{ ρ ↯ }}}) by eauto.
assert (tail_rel d{{{ ρ ↯ }}} d{{{ ρ ↯ }}}) by (etransitivity; eassumption).
destruct_rel_mod_eval.
eexists; symmetry; handle_per_univ_elem_irrel; intuition.
Qed.
Corollary per_ctx_sym : forall Γ Δ R,
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ DF Δ ≈ Γ ∈ per_ctx_env ↘ R }}.
Proof.
intros * ?%per_ctx_env_sym.
firstorder.
Qed.
Corollary per_env_sym : forall Γ Δ R ρ ρ',
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ Dom ρ ≈ ρ' ∈ R }} ->
{{ Dom ρ' ≈ ρ ∈ R }}.
Proof.
intros * ?%per_ctx_env_sym.
firstorder.
Qed.
Corollary per_ctx_env_left_irrel : forall Γ Γ' Δ R R',
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ DF Γ' ≈ Δ ∈ per_ctx_env ↘ R' }} ->
R <~> R'.
Proof.
intros * ?%per_ctx_sym ?%per_ctx_sym.
eauto using per_ctx_env_right_irrel.
Qed.
Corollary per_ctx_env_cross_irrel : forall Γ Δ Δ' R R',
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ DF Δ' ≈ Γ ∈ per_ctx_env ↘ R' }} ->
R <~> R'.
Proof.
intros * ? ?%per_ctx_sym.
eauto using per_ctx_env_right_irrel.
Qed.
Ltac do_per_ctx_env_irrel_assert1 :=
let tactic_error o1 o2 := fail 3 "per_ctx_env_irrel equality between" o1 "and" o2 "cannot be solved" in
match goal with
| H1 : {{ DF ^?Γ ≈ ^_ ∈ per_ctx_env ↘ ?R1 }},
H2 : {{ DF ^?Γ ≈ ^_ ∈ per_ctx_env ↘ ?R2 }} |- _ =>
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_ctx_env_right_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
| H1 : {{ DF ^_ ≈ ^?Δ ∈ per_ctx_env ↘ ?R1 }},
H2 : {{ DF ^_ ≈ ^?Δ ∈ per_ctx_env ↘ ?R2 }} |- _ =>
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_ctx_env_left_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
| H1 : {{ DF ^?Γ ≈ ^_ ∈ per_ctx_env ↘ ?R1 }},
H2 : {{ DF ^_ ≈ ^?Γ ∈ per_ctx_env ↘ ?R2 }} |- _ =>
forall i a a' ρ B ρ' B'
(in_rel : relation domain)
(out_rel : forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), relation domain)
elem_rel,
{{ DF a ≈ a' ∈ per_univ_elem i ↘ in_rel}} ->
(forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}),
rel_mod_eval (per_univ_elem i) B d{{{ ρ ↦ c }}} B' d{{{ ρ' ↦ c' }}} (out_rel equiv_c_c')) ->
(elem_rel <~> fun f f' => forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app f c f' c' (out_rel equiv_c_c')) ->
{{ DF Π a ρ B ≈ Π a' ρ' B' ∈ per_univ_elem i ↘ elem_rel }}.
Proof.
intros.
basic_per_univ_elem_econstructor; eauto.
typeclasses eauto.
Qed.
Lemma per_univ_elem_eq' :
forall (i : nat) {a a' m1 m1' m2 m2' : domain} (point_rel elem_rel : relation domain),
{{ DF a ≈ a' ∈ per_univ_elem i ↘ point_rel }} ->
{{ Dom m1 ≈ m1' ∈ point_rel }} ->
{{ Dom m2 ≈ m2' ∈ point_rel }} ->
elem_rel <~> per_eq point_rel m1 m2' ->
{{ DF Eq a m1 m2 ≈ Eq a' m1' m2' ∈ per_univ_elem i ↘ elem_rel }}.
Proof.
intros.
basic_per_univ_elem_econstructor; eauto.
typeclasses eauto.
Qed.
Ltac per_univ_elem_econstructor :=
(repeat intro; hnf; (eapply per_univ_elem_pi' || eapply per_univ_elem_eq')) + basic_per_univ_elem_econstructor.
#[export]
Hint Resolve per_univ_elem_pi' per_univ_elem_eq' : mctt.
Lemma per_univ_elem_pi_clean_inversion : forall {i j a a' in_rel ρ ρ' B B' elem_rel},
{{ DF a ≈ a' ∈ per_univ_elem i ↘ in_rel }} ->
{{ DF Π a ρ B ≈ Π a' ρ' B' ∈ per_univ_elem j ↘ elem_rel }} ->
exists (out_rel : forall {c c'} (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), relation domain),
(forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}),
rel_mod_eval (per_univ_elem j) B d{{{ ρ ↦ c }}} B' d{{{ ρ' ↦ c' }}} (out_rel equiv_c_c')) /\
(elem_rel <~> fun f f' => forall c c' (equiv_c_c' : {{ Dom c ≈ c' ∈ in_rel }}), rel_mod_app f c f' c' (out_rel equiv_c_c')).
Proof.
intros * Ha HΠ.
basic_invert_per_univ_elem HΠ.
handle_per_univ_elem_irrel.
eexists.
split.
- instantiate (1 := fun c c' (equiv_c_c' : in_rel c c') m m' =>
forall R,
rel_typ j B d{{{ ρ ↦ c }}} B' d{{{ ρ' ↦ c' }}} R ->
R m m').
intros.
assert (in_rel0 c c') by intuition.
(on_all_hyp: destruct_rel_by_assumption in_rel0).
econstructor; eauto.
apply -> per_univ_elem_morphism_iff; eauto.
split; intuition.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
intuition.
- split; intros;
[assert (in_rel0 c c') by intuition; (on_all_hyp: destruct_rel_by_assumption in_rel0)
| assert (in_rel c c') by intuition; (on_all_hyp: destruct_rel_by_assumption in_rel)];
econstructor; intuition.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
intuition.
Qed.
Ltac invert_per_univ_elem H :=
(unshelve eapply (per_univ_elem_pi_clean_inversion _) in H; shelve_unifiable; [eassumption |]; destruct H as [? []])
+ basic_invert_per_univ_elem H.
Ltac invert_per_univ_elems := match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
Lemma per_univ_elem_cumu : forall i a0 a1 R,
{{ DF a0 ≈ a1 ∈ per_univ_elem i ↘ R }} ->
{{ DF a0 ≈ a1 ∈ per_univ_elem (S i) ↘ R }}.
Proof with solve [eauto].
simpl.
induction 1 using per_univ_elem_ind; subst;
per_univ_elem_econstructor; eauto.
intros.
destruct_rel_mod_eval.
econstructor...
Qed.
#[export]
Hint Resolve per_univ_elem_cumu : mctt.
Lemma per_univ_elem_cumu_ge : forall i i' a0 a1 R,
i <= i' ->
{{ DF a0 ≈ a1 ∈ per_univ_elem i ↘ R }} ->
{{ DF a0 ≈ a1 ∈ per_univ_elem i' ↘ R }}.
Proof with mautosolve.
induction 1...
Qed.
#[export]
Hint Resolve per_univ_elem_cumu_ge : mctt.
Lemma per_univ_elem_cumu_max_left : forall i j a0 a1 R,
{{ DF a0 ≈ a1 ∈ per_univ_elem i ↘ R }} ->
{{ DF a0 ≈ a1 ∈ per_univ_elem (max i j) ↘ R }}.
Proof with mautosolve.
intros.
assert (i <= max i j) by lia...
Qed.
Lemma per_univ_elem_cumu_max_right : forall i j a0 a1 R,
{{ DF a0 ≈ a1 ∈ per_univ_elem j ↘ R }} ->
{{ DF a0 ≈ a1 ∈ per_univ_elem (max i j) ↘ R }}.
Proof with mautosolve.
intros.
assert (j <= max i j) by lia...
Qed.
Lemma per_subtyp_to_univ_elem : forall a b i,
{{ Sub a <: b at i }} ->
exists R R',
{{ DF a ≈ a ∈ per_univ_elem i ↘ R }} /\
{{ DF b ≈ b ∈ per_univ_elem i ↘ R' }}.
Proof.
destruct 1; do 2 eexists; mauto;
split;
try (etransitivity; try eassumption; symmetry; eassumption);
per_univ_elem_econstructor; mauto 3;
try apply Equivalence_Reflexive.
lia.
Qed.
Lemma per_elem_subtyping : forall A B i,
{{ Sub A <: B at i }} ->
forall R R' a b,
{{ DF A ≈ A ∈ per_univ_elem i ↘ R }} ->
{{ DF B ≈ B ∈ per_univ_elem i ↘ R' }} ->
R a b ->
R' a b.
Proof.
induction 1; intros;
handle_per_univ_elem_irrel;
saturate_refl;
invert_per_univ_elems;
handle_per_univ_elem_irrel;
clear_refl_eqs;
trivial.
- firstorder mauto.
- intros.
handle_per_univ_elem_irrel.
destruct_rel_mod_eval.
saturate_refl_for per_univ_elem.
destruct_rel_mod_app.
simplify_evals.
econstructor; eauto.
intuition.
Qed.
Lemma per_elem_subtyping_gen : forall a b i a' b' R R' m n,
{{ Sub a <: b at i }} ->
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ DF b ≈ b' ∈ per_univ_elem i ↘ R' }} ->
R m n ->
R' m n.
Proof.
intros.
eapply per_elem_subtyping; saturate_refl; try eassumption.
Qed.
Lemma per_subtyp_refl1 : forall a b i R,
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ Sub a <: b at i }}.
Proof.
simpl; induction 1 using per_univ_elem_ind;
subst;
mauto;
destruct_all.
assert ({{ DF Π a ρ B ≈ Π a' ρ' B' ∈ per_univ_elem i ↘ elem_rel }})
by (per_univ_elem_econstructor; intuition; destruct_rel_mod_eval; mauto).
saturate_refl_for per_univ_elem.
econstructor; eauto.
intros;
destruct_rel_mod_eval;
functional_eval_rewrite_clear;
trivial.
Qed.
#[export]
Hint Resolve per_subtyp_refl1 : mctt.
Lemma per_subtyp_refl2 : forall a b i R,
{{ DF a ≈ b ∈ per_univ_elem i ↘ R }} ->
{{ Sub b <: a at i }}.
Proof.
intros.
symmetry in H.
eauto using per_subtyp_refl1.
Qed.
#[export]
Hint Resolve per_subtyp_refl2 : mctt.
Lemma per_subtyp_trans : forall a1 a2 i,
{{ Sub a1 <: a2 at i }} ->
forall a3,
{{ Sub a2 <: a3 at i }} ->
{{ Sub a1 <: a3 at i }}.
Proof.
induction 1; intros ? Hsub; simpl in *.
1,2,5: progressive_inversion; mauto.
- econstructor; lia.
- dependent destruction Hsub.
handle_per_univ_elem_irrel.
econstructor; eauto.
+ etransitivity; eassumption.
+ intros.
invert_per_univ_elems.
handle_per_univ_elem_irrel.
saturate_refl_for in_rel1.
destruct_rel_mod_eval.
intuition.
- dependent destruction Hsub.
handle_per_univ_elem_irrel.
econstructor; etransitivity; eauto.
Qed.
#[export]
Hint Resolve per_subtyp_trans : mctt.
#[export]
Instance per_subtyp_trans_ins i : Transitive (per_subtyp i).
Proof.
eauto using per_subtyp_trans.
Qed.
Lemma per_subtyp_transp : forall a b i a' b' R R',
{{ Sub a <: b at i }} ->
{{ DF a ≈ a' ∈ per_univ_elem i ↘ R }} ->
{{ DF b ≈ b' ∈ per_univ_elem i ↘ R' }} ->
{{ Sub a' <: b' at i }}.
Proof.
mauto using per_subtyp_refl1, per_subtyp_refl2.
Qed.
Lemma per_subtyp_cumu : forall a1 a2 i,
{{ Sub a1 <: a2 at i }} ->
forall j,
i <= j ->
{{ Sub a1 <: a2 at j }}.
Proof.
induction 1; intros; econstructor; mauto.
lia.
Qed.
#[export]
Hint Resolve per_subtyp_cumu : mctt.
Lemma per_subtyp_cumu_left : forall a1 a2 i j,
{{ Sub a1 <: a2 at i }} ->
{{ Sub a1 <: a2 at max i j }}.
Proof.
intros. eapply per_subtyp_cumu; try eassumption.
lia.
Qed.
Lemma per_subtyp_cumu_right : forall a1 a2 i j,
{{ Sub a1 <: a2 at i }} ->
{{ Sub a1 <: a2 at max j i }}.
Proof.
intros. eapply per_subtyp_cumu; try eassumption.
lia.
Qed.
Add Parametric Morphism : per_ctx_env
with signature (@relation_equivalence env) ==> eq ==> eq ==> iff as per_ctx_env_morphism_iff.
Proof with mautosolve.
intros R R' HRR'.
split; intro Horig; [gen R' | gen R];
induction Horig; econstructor;
apply_relation_equivalence; try reflexivity...
Qed.
Add Parametric Morphism : per_ctx_env
with signature (@relation_equivalence env) ==> (@relation_equivalence ctx) as per_ctx_env_morphism_relation_equivalence.
Proof.
intros * HRR' Γ Γ'.
simpl.
rewrite HRR'.
reflexivity.
Qed.
Lemma per_ctx_env_right_irrel : forall Γ Δ Δ' R R',
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ DF Γ ≈ Δ' ∈ per_ctx_env ↘ R' }} ->
R <~> R'.
Proof with (destruct_rel_typ; handle_per_univ_elem_irrel; eexists; intuition).
intros * Horig; gen Δ' R'.
induction Horig; intros * Hright;
inversion Hright; subst;
apply_relation_equivalence;
try reflexivity.
specialize (IHHorig _ _ equiv_Γ_Γ'0).
intros ρ ρ'.
split; intros Hcons; dependent destruction Hcons.
- assert {{ Dom ρ ↯ ≈ ρ' ↯ ∈ tail_rel0 }} by intuition...
- assert {{ Dom ρ ↯ ≈ ρ' ↯ ∈ tail_rel }} by intuition...
Qed.
Lemma per_ctx_env_sym : forall Γ Δ R,
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ DF Δ ≈ Γ ∈ per_ctx_env ↘ R }} /\
(forall ρ ρ',
{{ Dom ρ ≈ ρ' ∈ R }} ->
{{ Dom ρ' ≈ ρ ∈ R }}).
Proof with solve [intuition].
simpl.
induction 1; split; simpl in *; destruct_conjs; try econstructor; intuition;
pose proof (@relation_equivalence_pointwise env).
- assert (tail_rel ρ' ρ) by eauto.
assert (tail_rel ρ ρ) by (etransitivity; eassumption).
destruct_rel_mod_eval.
handle_per_univ_elem_irrel.
econstructor; eauto.
symmetry...
- apply_relation_equivalence.
destruct_by_head cons_per_ctx_env.
assert (tail_rel d{{{ ρ' ↯ }}} d{{{ ρ ↯ }}}) by eauto.
assert (tail_rel d{{{ ρ ↯ }}} d{{{ ρ ↯ }}}) by (etransitivity; eassumption).
destruct_rel_mod_eval.
eexists; symmetry; handle_per_univ_elem_irrel; intuition.
Qed.
Corollary per_ctx_sym : forall Γ Δ R,
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ DF Δ ≈ Γ ∈ per_ctx_env ↘ R }}.
Proof.
intros * ?%per_ctx_env_sym.
firstorder.
Qed.
Corollary per_env_sym : forall Γ Δ R ρ ρ',
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ Dom ρ ≈ ρ' ∈ R }} ->
{{ Dom ρ' ≈ ρ ∈ R }}.
Proof.
intros * ?%per_ctx_env_sym.
firstorder.
Qed.
Corollary per_ctx_env_left_irrel : forall Γ Γ' Δ R R',
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ DF Γ' ≈ Δ ∈ per_ctx_env ↘ R' }} ->
R <~> R'.
Proof.
intros * ?%per_ctx_sym ?%per_ctx_sym.
eauto using per_ctx_env_right_irrel.
Qed.
Corollary per_ctx_env_cross_irrel : forall Γ Δ Δ' R R',
{{ DF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ DF Δ' ≈ Γ ∈ per_ctx_env ↘ R' }} ->
R <~> R'.
Proof.
intros * ? ?%per_ctx_sym.
eauto using per_ctx_env_right_irrel.
Qed.
Ltac do_per_ctx_env_irrel_assert1 :=
let tactic_error o1 o2 := fail 3 "per_ctx_env_irrel equality between" o1 "and" o2 "cannot be solved" in
match goal with
| H1 : {{ DF ^?Γ ≈ ^_ ∈ per_ctx_env ↘ ?R1 }},
H2 : {{ DF ^?Γ ≈ ^_ ∈ per_ctx_env ↘ ?R2 }} |- _ =>
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_ctx_env_right_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
| H1 : {{ DF ^_ ≈ ^?Δ ∈ per_ctx_env ↘ ?R1 }},
H2 : {{ DF ^_ ≈ ^?Δ ∈ per_ctx_env ↘ ?R2 }} |- _ =>
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_ctx_env_left_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
| H1 : {{ DF ^?Γ ≈ ^_ ∈ per_ctx_env ↘ ?R1 }},
H2 : {{ DF ^_ ≈ ^?Γ ∈ per_ctx_env ↘ ?R2 }} |- _ =>
Order matters less here as H1 and H2 cannot be exchanged
assert_fails (unify R1 R2);
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_ctx_env_cross_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
end.
Ltac do_per_ctx_env_irrel_assert :=
repeat do_per_ctx_env_irrel_assert1.
Ltac handle_per_ctx_env_irrel :=
functional_eval_rewrite_clear;
do_per_ctx_env_irrel_assert;
apply_relation_equivalence;
clear_dups.
Lemma per_ctx_env_trans : forall Γ1 Γ2 R,
{{ DF Γ1 ≈ Γ2 ∈ per_ctx_env ↘ R }} ->
(forall Γ3,
{{ DF Γ2 ≈ Γ3 ∈ per_ctx_env ↘ R }} ->
{{ DF Γ1 ≈ Γ3 ∈ per_ctx_env ↘ R }}) /\
(forall ρ1 ρ2 ρ3,
{{ Dom ρ1 ≈ ρ2 ∈ R }} ->
{{ Dom ρ2 ≈ ρ3 ∈ R }} ->
{{ Dom ρ1 ≈ ρ3 ∈ R }}).
Proof with solve [eauto using per_univ_trans].
simpl.
induction 1; subst;
[> split;
[ inversion 1; subst; eauto
| intros; destruct_conjs; eauto] ..];
pose proof (@relation_equivalence_pointwise env);
handle_per_ctx_env_irrel;
try solve [intuition].
- econstructor; only 4: reflexivity; eauto.
+ apply_relation_equivalence. intuition.
+ intros.
assert (tail_rel ρ ρ) by intuition.
assert (tail_rel0 ρ ρ') by intuition.
destruct_rel_typ.
handle_per_univ_elem_irrel.
econstructor; intuition.
match goal with
| H : R1 <~> R2 |- _ => fail 1
| H : R2 <~> R1 |- _ => fail 1
| _ => assert (R1 <~> R2) by (eapply per_ctx_env_cross_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
end
end.
Ltac do_per_ctx_env_irrel_assert :=
repeat do_per_ctx_env_irrel_assert1.
Ltac handle_per_ctx_env_irrel :=
functional_eval_rewrite_clear;
do_per_ctx_env_irrel_assert;
apply_relation_equivalence;
clear_dups.
Lemma per_ctx_env_trans : forall Γ1 Γ2 R,
{{ DF Γ1 ≈ Γ2 ∈ per_ctx_env ↘ R }} ->
(forall Γ3,
{{ DF Γ2 ≈ Γ3 ∈ per_ctx_env ↘ R }} ->
{{ DF Γ1 ≈ Γ3 ∈ per_ctx_env ↘ R }}) /\
(forall ρ1 ρ2 ρ3,
{{ Dom ρ1 ≈ ρ2 ∈ R }} ->
{{ Dom ρ2 ≈ ρ3 ∈ R }} ->
{{ Dom ρ1 ≈ ρ3 ∈ R }}).
Proof with solve [eauto using per_univ_trans].
simpl.
induction 1; subst;
[> split;
[ inversion 1; subst; eauto
| intros; destruct_conjs; eauto] ..];
pose proof (@relation_equivalence_pointwise env);
handle_per_ctx_env_irrel;
try solve [intuition].
- econstructor; only 4: reflexivity; eauto.
+ apply_relation_equivalence. intuition.
+ intros.
assert (tail_rel ρ ρ) by intuition.
assert (tail_rel0 ρ ρ') by intuition.
destruct_rel_typ.
handle_per_univ_elem_irrel.
econstructor; intuition.
This one cannot be replaced with `etransitivity` as we need different `i`s.
eapply per_univ_trans; [| eassumption]; eassumption.
- destruct_by_head cons_per_ctx_env.
assert (tail_rel d{{{ ρ ↯ }}} d{{{ ρ' ↯ }}}) by eauto.
destruct_rel_typ.
handle_per_univ_elem_irrel.
eexists.
apply_relation_equivalence.
etransitivity; intuition.
Qed.
Corollary per_ctx_trans : forall Γ1 Γ2 Γ3 R,
{{ DF Γ1 ≈ Γ2 ∈ per_ctx_env ↘ R }} ->
{{ DF Γ2 ≈ Γ3 ∈ per_ctx_env ↘ R }} ->
{{ DF Γ1 ≈ Γ3 ∈ per_ctx_env ↘ R }}.
Proof.
intros * ?% per_ctx_env_trans.
firstorder.
Qed.
Corollary per_env_trans : forall Γ1 Γ2 R ρ1 ρ2 ρ3,
{{ DF Γ1 ≈ Γ2 ∈ per_ctx_env ↘ R }} ->
{{ Dom ρ1 ≈ ρ2 ∈ R }} ->
{{ Dom ρ2 ≈ ρ3 ∈ R }} ->
{{ Dom ρ1 ≈ ρ3 ∈ R }}.
Proof.
intros * ?% per_ctx_env_trans.
firstorder.
Qed.
#[export]
Instance per_ctx_PER {R} : PER (per_ctx_env R).
Proof.
split.
- auto using per_ctx_sym.
- eauto using per_ctx_trans.
Qed.
#[export]
Instance per_env_PER {R Γ Δ} (H : per_ctx_env R Γ Δ) : PER R.
Proof.
split.
- pose proof (fun ρ ρ' => per_env_sym _ _ _ ρ ρ' H); auto.
- pose proof (fun ρ0 ρ1 ρ2 => per_env_trans _ _ _ ρ0 ρ1 ρ2 H); eauto.
Qed.
- destruct_by_head cons_per_ctx_env.
assert (tail_rel d{{{ ρ ↯ }}} d{{{ ρ' ↯ }}}) by eauto.
destruct_rel_typ.
handle_per_univ_elem_irrel.
eexists.
apply_relation_equivalence.
etransitivity; intuition.
Qed.
Corollary per_ctx_trans : forall Γ1 Γ2 Γ3 R,
{{ DF Γ1 ≈ Γ2 ∈ per_ctx_env ↘ R }} ->
{{ DF Γ2 ≈ Γ3 ∈ per_ctx_env ↘ R }} ->
{{ DF Γ1 ≈ Γ3 ∈ per_ctx_env ↘ R }}.
Proof.
intros * ?% per_ctx_env_trans.
firstorder.
Qed.
Corollary per_env_trans : forall Γ1 Γ2 R ρ1 ρ2 ρ3,
{{ DF Γ1 ≈ Γ2 ∈ per_ctx_env ↘ R }} ->
{{ Dom ρ1 ≈ ρ2 ∈ R }} ->
{{ Dom ρ2 ≈ ρ3 ∈ R }} ->
{{ Dom ρ1 ≈ ρ3 ∈ R }}.
Proof.
intros * ?% per_ctx_env_trans.
firstorder.
Qed.
#[export]
Instance per_ctx_PER {R} : PER (per_ctx_env R).
Proof.
split.
- auto using per_ctx_sym.
- eauto using per_ctx_trans.
Qed.
#[export]
Instance per_env_PER {R Γ Δ} (H : per_ctx_env R Γ Δ) : PER R.
Proof.
split.
- pose proof (fun ρ ρ' => per_env_sym _ _ _ ρ ρ' H); auto.
- pose proof (fun ρ0 ρ1 ρ2 => per_env_trans _ _ _ ρ0 ρ1 ρ2 H); eauto.
Qed.
This lemma removes the PER argument
Lemma per_ctx_env_cons' : forall {Γ Γ' i A A' tail_rel}
(head_rel : forall {ρ ρ'} (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ tail_rel }}), relation domain)
env_rel,
{{ EF Γ ≈ Γ' ∈ per_ctx_env ↘ tail_rel }} ->
(forall {ρ ρ'} (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ tail_rel }}),
rel_typ i A ρ A' ρ' (head_rel equiv_ρ_ρ')) ->
(env_rel <~> cons_per_ctx_env tail_rel (@head_rel)) ->
{{ EF Γ, A ≈ Γ', A' ∈ per_ctx_env ↘ env_rel }}.
Proof.
intros.
econstructor; eauto.
typeclasses eauto.
Qed.
#[export]
Hint Resolve per_ctx_env_cons' : mctt.
Ltac per_ctx_env_econstructor :=
(repeat intro; hnf; eapply per_ctx_env_cons') + econstructor.
Lemma per_ctx_env_cons_clean_inversion : forall {Γ Γ' env_relΓ A A' env_relΓA},
{{ EF Γ ≈ Γ' ∈ per_ctx_env ↘ env_relΓ }} ->
{{ EF Γ, A ≈ Γ', A' ∈ per_ctx_env ↘ env_relΓA }} ->
exists i (head_rel : forall {ρ ρ'} (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}), relation domain),
(forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}),
rel_typ i A ρ A' ρ' (head_rel equiv_ρ_ρ')) /\
(env_relΓA <~> cons_per_ctx_env env_relΓ (@head_rel)).
Proof with intuition.
intros * HΓ HΓA.
inversion HΓA; subst.
handle_per_ctx_env_irrel.
eexists.
eexists.
split; intros.
- instantiate (1 := fun ρ ρ' (equiv_ρ_ρ' : env_relΓ ρ ρ') m m' =>
forall R,
rel_typ i A ρ A' ρ' R ->
{{ Dom m ≈ m' ∈ R }}).
assert (tail_rel ρ ρ') by intuition.
(on_all_hyp: destruct_rel_by_assumption tail_rel).
econstructor; eauto.
apply -> per_univ_elem_morphism_iff; eauto.
split; intros...
destruct_by_head rel_typ.
handle_per_univ_elem_irrel...
- intros ρ ρ'.
split; intros; destruct_by_head cons_per_ctx_env;
assert {{ Dom ρ ↯ ≈ ρ' ↯ ∈ tail_rel }} by intuition;
(on_all_hyp: destruct_rel_by_assumption tail_rel);
unshelve eexists; intros...
destruct_by_head rel_typ.
handle_per_univ_elem_irrel...
Qed.
Ltac invert_per_ctx_env H :=
(unshelve eapply (per_ctx_env_cons_clean_inversion _) in H; [eassumption | |]; destruct H as [? [? []]])
+ (inversion H; subst).
Ltac invert_per_ctx_envs := match_by_head per_ctx_env ltac:(fun H => directed invert_per_ctx_env H).
Ltac invert_per_ctx_envs_of rel := match_by_head (per_ctx_env rel) ltac:(fun H => directed invert_per_ctx_env H).
Lemma per_ctx_respects_length : forall {Γ Γ'},
{{ Exp Γ ≈ Γ' ∈ per_ctx }} ->
length Γ = length Γ'.
Proof.
intros * [? H].
induction H; simpl; congruence.
Qed.
Lemma per_ctx_subtyp_to_env : forall Γ Δ,
{{ SubE Γ <: Δ }} ->
exists R R',
{{ EF Γ ≈ Γ ∈ per_ctx_env ↘ R }} /\
{{ EF Δ ≈ Δ ∈ per_ctx_env ↘ R' }}.
Proof.
destruct 1; destruct_all.
- repeat eexists; econstructor; apply Equivalence_Reflexive.
- eauto.
Qed.
Lemma per_ctx_env_subtyping : forall Γ Δ,
{{ SubE Γ <: Δ }} ->
forall R R' ρ ρ',
{{ EF Γ ≈ Γ ∈ per_ctx_env ↘ R }} ->
{{ EF Δ ≈ Δ ∈ per_ctx_env ↘ R' }} ->
R ρ ρ' ->
R' ρ ρ'.
Proof.
induction 1; intros;
handle_per_ctx_env_irrel;
invert_per_ctx_envs;
apply_relation_equivalence;
trivial.
destruct_by_head cons_per_ctx_env.
assert {{ Dom ρ ↯ ≈ ρ' ↯ ∈ tail_rel0 }} by intuition.
unshelve eexists; [eassumption |].
destruct_rel_typ.
eapply per_elem_subtyping with (i := max x (max i0 i)); try eassumption.
- eauto using per_subtyp_cumu_right.
- saturate_refl.
eauto using per_univ_elem_cumu_max_left.
- saturate_refl.
eauto using per_univ_elem_cumu_max_left, per_univ_elem_cumu_max_right.
Qed.
Lemma per_ctx_subtyp_refl1 : forall Γ Δ R,
{{ EF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ SubE Γ <: Δ }}.
Proof.
induction 1; mauto.
assert (exists R, {{ EF Γ , A ≈ Γ' , A' ∈ per_ctx_env ↘ R }}) by
(eexists; eapply per_ctx_env_cons'; eassumption).
destruct_all.
econstructor; try solve [saturate_refl; mauto 2].
intros.
destruct_rel_typ.
simplify_evals.
eauto using per_subtyp_refl1.
Qed.
Lemma per_ctx_subtyp_refl2 : forall Γ Δ R,
{{ EF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ SubE Δ <: Γ }}.
Proof.
intros. symmetry in H. eauto using per_ctx_subtyp_refl1.
Qed.
Lemma per_ctx_subtyp_trans : forall Γ1 Γ2,
{{ SubE Γ1 <: Γ2 }} ->
forall Γ3,
{{ SubE Γ2 <: Γ3 }} ->
{{ SubE Γ1 <: Γ3 }}.
Proof.
induction 1; intros;
dir_inversion_by_head per_ctx_subtyp; subst;
repeat invert_per_ctx_envs;
mauto 1; clear_PER.
handle_per_ctx_env_irrel.
econstructor; try eassumption.
- firstorder.
- instantiate (1 := max i i0).
intros.
assert {{ Dom ρ ≈ ρ' ∈ tail_rel0 }}
by (apply_relation_equivalence; eapply per_ctx_env_subtyping; revgoals; eassumption).
saturate_refl_for tail_rel.
destruct_rel_typ.
handle_per_univ_elem_irrel.
etransitivity; intuition mauto using per_subtyp_cumu_left, per_subtyp_cumu_right.
- econstructor; intuition.
+ typeclasses eauto.
+ solve_refl.
- econstructor; mauto 3.
+ typeclasses eauto.
+ solve_refl.
Qed.
#[export]
Hint Resolve per_ctx_subtyp_trans : mctt.
#[export]
Instance per_ctx_subtyp_trans_ins : Transitive per_ctx_subtyp.
Proof.
eauto using per_ctx_subtyp_trans.
Qed.
(head_rel : forall {ρ ρ'} (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ tail_rel }}), relation domain)
env_rel,
{{ EF Γ ≈ Γ' ∈ per_ctx_env ↘ tail_rel }} ->
(forall {ρ ρ'} (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ tail_rel }}),
rel_typ i A ρ A' ρ' (head_rel equiv_ρ_ρ')) ->
(env_rel <~> cons_per_ctx_env tail_rel (@head_rel)) ->
{{ EF Γ, A ≈ Γ', A' ∈ per_ctx_env ↘ env_rel }}.
Proof.
intros.
econstructor; eauto.
typeclasses eauto.
Qed.
#[export]
Hint Resolve per_ctx_env_cons' : mctt.
Ltac per_ctx_env_econstructor :=
(repeat intro; hnf; eapply per_ctx_env_cons') + econstructor.
Lemma per_ctx_env_cons_clean_inversion : forall {Γ Γ' env_relΓ A A' env_relΓA},
{{ EF Γ ≈ Γ' ∈ per_ctx_env ↘ env_relΓ }} ->
{{ EF Γ, A ≈ Γ', A' ∈ per_ctx_env ↘ env_relΓA }} ->
exists i (head_rel : forall {ρ ρ'} (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}), relation domain),
(forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}),
rel_typ i A ρ A' ρ' (head_rel equiv_ρ_ρ')) /\
(env_relΓA <~> cons_per_ctx_env env_relΓ (@head_rel)).
Proof with intuition.
intros * HΓ HΓA.
inversion HΓA; subst.
handle_per_ctx_env_irrel.
eexists.
eexists.
split; intros.
- instantiate (1 := fun ρ ρ' (equiv_ρ_ρ' : env_relΓ ρ ρ') m m' =>
forall R,
rel_typ i A ρ A' ρ' R ->
{{ Dom m ≈ m' ∈ R }}).
assert (tail_rel ρ ρ') by intuition.
(on_all_hyp: destruct_rel_by_assumption tail_rel).
econstructor; eauto.
apply -> per_univ_elem_morphism_iff; eauto.
split; intros...
destruct_by_head rel_typ.
handle_per_univ_elem_irrel...
- intros ρ ρ'.
split; intros; destruct_by_head cons_per_ctx_env;
assert {{ Dom ρ ↯ ≈ ρ' ↯ ∈ tail_rel }} by intuition;
(on_all_hyp: destruct_rel_by_assumption tail_rel);
unshelve eexists; intros...
destruct_by_head rel_typ.
handle_per_univ_elem_irrel...
Qed.
Ltac invert_per_ctx_env H :=
(unshelve eapply (per_ctx_env_cons_clean_inversion _) in H; [eassumption | |]; destruct H as [? [? []]])
+ (inversion H; subst).
Ltac invert_per_ctx_envs := match_by_head per_ctx_env ltac:(fun H => directed invert_per_ctx_env H).
Ltac invert_per_ctx_envs_of rel := match_by_head (per_ctx_env rel) ltac:(fun H => directed invert_per_ctx_env H).
Lemma per_ctx_respects_length : forall {Γ Γ'},
{{ Exp Γ ≈ Γ' ∈ per_ctx }} ->
length Γ = length Γ'.
Proof.
intros * [? H].
induction H; simpl; congruence.
Qed.
Lemma per_ctx_subtyp_to_env : forall Γ Δ,
{{ SubE Γ <: Δ }} ->
exists R R',
{{ EF Γ ≈ Γ ∈ per_ctx_env ↘ R }} /\
{{ EF Δ ≈ Δ ∈ per_ctx_env ↘ R' }}.
Proof.
destruct 1; destruct_all.
- repeat eexists; econstructor; apply Equivalence_Reflexive.
- eauto.
Qed.
Lemma per_ctx_env_subtyping : forall Γ Δ,
{{ SubE Γ <: Δ }} ->
forall R R' ρ ρ',
{{ EF Γ ≈ Γ ∈ per_ctx_env ↘ R }} ->
{{ EF Δ ≈ Δ ∈ per_ctx_env ↘ R' }} ->
R ρ ρ' ->
R' ρ ρ'.
Proof.
induction 1; intros;
handle_per_ctx_env_irrel;
invert_per_ctx_envs;
apply_relation_equivalence;
trivial.
destruct_by_head cons_per_ctx_env.
assert {{ Dom ρ ↯ ≈ ρ' ↯ ∈ tail_rel0 }} by intuition.
unshelve eexists; [eassumption |].
destruct_rel_typ.
eapply per_elem_subtyping with (i := max x (max i0 i)); try eassumption.
- eauto using per_subtyp_cumu_right.
- saturate_refl.
eauto using per_univ_elem_cumu_max_left.
- saturate_refl.
eauto using per_univ_elem_cumu_max_left, per_univ_elem_cumu_max_right.
Qed.
Lemma per_ctx_subtyp_refl1 : forall Γ Δ R,
{{ EF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ SubE Γ <: Δ }}.
Proof.
induction 1; mauto.
assert (exists R, {{ EF Γ , A ≈ Γ' , A' ∈ per_ctx_env ↘ R }}) by
(eexists; eapply per_ctx_env_cons'; eassumption).
destruct_all.
econstructor; try solve [saturate_refl; mauto 2].
intros.
destruct_rel_typ.
simplify_evals.
eauto using per_subtyp_refl1.
Qed.
Lemma per_ctx_subtyp_refl2 : forall Γ Δ R,
{{ EF Γ ≈ Δ ∈ per_ctx_env ↘ R }} ->
{{ SubE Δ <: Γ }}.
Proof.
intros. symmetry in H. eauto using per_ctx_subtyp_refl1.
Qed.
Lemma per_ctx_subtyp_trans : forall Γ1 Γ2,
{{ SubE Γ1 <: Γ2 }} ->
forall Γ3,
{{ SubE Γ2 <: Γ3 }} ->
{{ SubE Γ1 <: Γ3 }}.
Proof.
induction 1; intros;
dir_inversion_by_head per_ctx_subtyp; subst;
repeat invert_per_ctx_envs;
mauto 1; clear_PER.
handle_per_ctx_env_irrel.
econstructor; try eassumption.
- firstorder.
- instantiate (1 := max i i0).
intros.
assert {{ Dom ρ ≈ ρ' ∈ tail_rel0 }}
by (apply_relation_equivalence; eapply per_ctx_env_subtyping; revgoals; eassumption).
saturate_refl_for tail_rel.
destruct_rel_typ.
handle_per_univ_elem_irrel.
etransitivity; intuition mauto using per_subtyp_cumu_left, per_subtyp_cumu_right.
- econstructor; intuition.
+ typeclasses eauto.
+ solve_refl.
- econstructor; mauto 3.
+ typeclasses eauto.
+ solve_refl.
Qed.
#[export]
Hint Resolve per_ctx_subtyp_trans : mctt.
#[export]
Instance per_ctx_subtyp_trans_ins : Transitive per_ctx_subtyp.
Proof.
eauto using per_ctx_subtyp_trans.
Qed.