Mctt.Core.Semantic.PER.Lemmas

From Coq Require Import Equivalence Lia Morphisms Morphisms_Prop Morphisms_Relations PeanoNat Relation_Definitions RelationClasses.
From Equations Require Import Equations.

From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Import PER.CoreTactics PER.Definitions.
Import Domain_Notations.

Add Parametric Morphism R0 `(R0_morphism : Proper _ ((@relation_equivalence domain) ==> (@relation_equivalence domain)) R0) A ρ A' ρ' : (rel_mod_eval R0 A ρ A' ρ')
    with signature (@relation_equivalence domain) ==> iff as rel_mod_eval_morphism.
Proof.
  split; intros []; econstructor; try eassumption;
    [> eapply R0_morphism; [symmetry + idtac |]; eassumption ..].
Qed.

Add Parametric Morphism f a f' a' : (rel_mod_app f a f' a')
    with signature (@relation_equivalence domain) ==> iff as rel_mod_app_morphism.
Proof.
  intros * HRR'.
  split; intros []; econstructor; try eassumption;
    apply HRR'; eassumption.
Qed.

Lemma per_bot_sym : forall m n,
    {{ Dom m n per_bot }} ->
    {{ Dom n m per_bot }}.
Proof with solve [eauto].
  intros * H s.
  pose proof H s.
  destruct_conjs...
Qed.

#[export]
Hint Resolve per_bot_sym : mctt.

Lemma per_bot_trans : forall m n l,
    {{ Dom m n per_bot }} ->
    {{ Dom n l per_bot }} ->
    {{ Dom m l per_bot }}.
Proof with solve [eauto].
  intros * Hmn Hnl s.
  pose proof (Hmn s, Hnl s).
  destruct_conjs.
  functional_read_rewrite_clear...
Qed.

#[export]
Hint Resolve per_bot_trans : mctt.

#[export]
Instance per_bot_PER : PER per_bot.
Proof.
  split.
  - eauto using per_bot_sym.
  - eauto using per_bot_trans.
Qed.

Lemma var_per_bot : forall {n},
    {{ Dom !n !n per_bot }}.
Proof.
  intros ? ?. repeat econstructor.
Qed.

#[export]
Hint Resolve var_per_bot : mctt.

Lemma per_top_sym : forall m n,
    {{ Dom m n per_top }} ->
    {{ Dom n m per_top }}.
Proof with solve [eauto].
  intros * H s.
  pose proof H s.
  destruct_conjs...
Qed.

#[export]
Hint Resolve per_top_sym : mctt.

Lemma per_top_trans : forall m n l,
    {{ Dom m n per_top }} ->
    {{ Dom n l per_top }} ->
    {{ Dom m l per_top }}.
Proof with solve [eauto].
  intros * Hmn Hnl s.
  pose proof (Hmn s, Hnl s).
  destruct_conjs.
  functional_read_rewrite_clear...
Qed.

#[export]
Hint Resolve per_top_trans : mctt.

#[export]
Instance per_top_PER : PER per_top.
Proof.
  split.
  - eauto using per_top_sym.
  - eauto using per_top_trans.
Qed.

Lemma per_bot_then_per_top : forall m m' a a' b b' c c',
    {{ Dom m m' per_bot }} ->
    {{ Dom ( a b) c m ( a' b') c' m' per_top }}.
Proof.
  intros * H s.
  pose proof H s.
  destruct_conjs.
  eexists; split; constructor; eassumption.
Qed.

#[export]
Hint Resolve per_bot_then_per_top : mctt.

Lemma per_top_typ_sym : forall m n,
    {{ Dom m n per_top_typ }} ->
    {{ Dom n m per_top_typ }}.
Proof with solve [eauto].
  intros * H s.
  pose proof H s.
  destruct_conjs...
Qed.

#[export]
Hint Resolve per_top_typ_sym : mctt.

Lemma per_top_typ_trans : forall m n l,
    {{ Dom m n per_top_typ }} ->
    {{ Dom n l per_top_typ }} ->
    {{ Dom m l per_top_typ }}.
Proof with solve [eauto].
  intros * Hmn Hnl s.
  pose proof (Hmn s, Hnl s).
  destruct_conjs.
  functional_read_rewrite_clear...
Qed.

#[export]
Hint Resolve per_top_typ_trans : mctt.

#[export]
Instance per_top_typ_PER : PER per_top_typ.
Proof.
  split.
  - eauto using per_top_typ_sym.
  - eauto using per_top_typ_trans.
Qed.

Lemma per_nat_sym : forall m n,
    {{ Dom m n per_nat }} ->
    {{ Dom n m per_nat }}.
Proof with mautosolve.
  induction 1; econstructor...
Qed.

#[export]
Hint Resolve per_nat_sym : mctt.

Lemma per_nat_trans : forall m n l,
    {{ Dom m n per_nat }} ->
    {{ Dom n l per_nat }} ->
    {{ Dom m l per_nat }}.
Proof with mautosolve.
  intros * H. gen l.
  induction H; inversion_clear 1; econstructor...
Qed.

#[export]
Hint Resolve per_nat_trans : mctt.

#[export]
Instance per_nat_PER : PER per_nat.
Proof.
  split.
  - eauto using per_nat_sym.
  - eauto using per_nat_trans.
Qed.

Lemma per_eq_sym : forall point_rel m1 m2 n n',
    PER point_rel ->
    {{ Dom n n' per_eq point_rel m1 m2 }} ->
    {{ Dom n' n per_eq point_rel m1 m2 }}.
Proof with mautosolve 3.
  intros * [] []; econstructor...
Qed.

#[export]
Hint Resolve per_eq_sym : mctt.

Lemma per_eq_trans : forall point_rel m1 m2 n n' n'',
    PER point_rel ->
    {{ Dom n n' per_eq point_rel m1 m2 }} ->
    {{ Dom n' n'' per_eq point_rel m1 m2 }} ->
    {{ Dom n n'' per_eq point_rel m1 m2 }}.
Proof with mautosolve 3.
  intros * [] [];
    inversion_clear 1;
    econstructor...
Qed.

#[export]
Hint Resolve per_eq_trans : mctt.

#[export]
Instance per_eq_PER {point_rel m1 m2} {Hpoint : PER point_rel} : PER (per_eq point_rel m1 m2).
Proof.
  split.
  - eauto using per_eq_sym.
  - eauto using per_eq_trans.
Qed.

Add Parametric Morphism : per_eq
    with signature (@relation_equivalence domain) ==> eq ==> eq ==> eq ==> eq ==> iff as per_eq_morphism_iff1.
Proof with solve [intuition].
  simpl.
  intros R R' HRR'.
  split; intros []; econstructor; eauto...
Qed.

Add Parametric Morphism : per_eq
    with signature (@relation_equivalence domain) ==> eq ==> eq ==> (@relation_equivalence domain) as per_eq_morphism_relation_equivalence1.
Proof with solve [intuition].
  simpl.
  intros * H ? ? ? ?.
  simpl.
  rewrite H.
  reflexivity.
Qed.

Add Parametric Morphism point_rel (HPER : PER point_rel) : (per_eq point_rel)
    with signature point_rel ==> eq ==> eq ==> eq ==> iff as per_eq_morphism_iff2.
Proof with solve [intuition].
  simpl.
  intros m1 m1' Hm1m1'.
  split; intros []; econstructor; eauto; etransitivity...
Qed.

Add Parametric Morphism point_rel (HPER : PER point_rel) : (per_eq point_rel)
    with signature point_rel ==> eq ==> (@relation_equivalence domain) as per_eq_morphism_relation_equivalence2.
Proof with solve [intuition].
  simpl.
  intros * H ? ? ?.
  simpl.
  rewrite H.
  reflexivity.
Qed.

Add Parametric Morphism point_rel (HPER : PER point_rel) m1 : (per_eq point_rel m1)
    with signature point_rel ==> eq ==> eq ==> iff as per_eq_morphism_iff3.
Proof with solve [intuition].
  simpl.
  intros m2 m2' Hm2m2'.
  split; intros []; econstructor; eauto; etransitivity...
Qed.

Add Parametric Morphism point_rel (HPER : PER point_rel) m1 : (per_eq point_rel m1)
    with signature point_rel ==> (@relation_equivalence domain) as per_eq_morphism_relation_equivalence3.
Proof with solve [intuition].
  simpl.
  intros * H ? ?.
  simpl.
  rewrite H.
  reflexivity.
Qed.

Lemma per_ne_sym : forall m n,
    {{ Dom m n per_ne }} ->
    {{ Dom n m per_ne }}.
Proof with mautosolve.
  intros * [].
  econstructor...
Qed.

#[export]
Hint Resolve per_ne_sym : mctt.

Lemma per_ne_trans : forall m n l,
    {{ Dom m n per_ne }} ->
    {{ Dom n l per_ne }} ->
    {{ Dom m l per_ne }}.
Proof with mautosolve.
  intros * [].
  inversion_clear 1.
  econstructor...
Qed.

#[export]
Hint Resolve per_ne_trans : mctt.

#[export]
Instance per_ne_PER : PER per_ne.
Proof.
  split.
  - eauto using per_ne_sym.
  - eauto using per_ne_trans.
Qed.

Add Parametric Morphism i : (per_univ_elem i)
    with signature (@relation_equivalence domain) ==> eq ==> eq ==> iff as per_univ_elem_morphism_iff.
Proof with mautosolve.
  simpl.
  intros R R' HRR'.
  split; intros Horig; [gen R' | gen R];
    induction Horig using per_univ_elem_ind; basic_per_univ_elem_econstructor; eauto;
    try (etransitivity; [symmetry + idtac|]; eassumption);
    intros;
    destruct_rel_mod_eval;
    econstructor...
Qed.

Add Parametric Morphism i : (per_univ_elem i)
    with signature (@relation_equivalence domain) ==> (@relation_equivalence domain) as per_univ_elem_morphism_relation_equivalence.
Proof with mautosolve.
  intros * H ? ?.
  simpl.
  rewrite H.
  reflexivity.
Qed.

Add Parametric Morphism i A ρ A' ρ' : (rel_typ i A ρ A' ρ')
    with signature (@relation_equivalence domain) ==> iff as rel_typ_morphism.
Proof.
  intros * HRR'.
  split; intros []; econstructor; try eassumption;
    [setoid_rewrite <- HRR' | setoid_rewrite HRR']; eassumption.
Qed.

Lemma domain_app_per : forall f f' a a',
  {{ Dom f f' per_bot }} ->
  {{ Dom a a' per_top }} ->
  {{ Dom f a f' a' per_bot }}.
Proof.
  intros. intros s.
  destruct (H s) as [? []].
  destruct (H0 s) as [? []].
  mauto.
Qed.

Ltac rewrite_relation_equivalence_left :=
  repeat match goal with
    | H : ?R1 <~> ?R2 |- _ =>
        try setoid_rewrite H;
        (on_all_hyp: fun H' => assert_fails (unify H H'); unmark H; setoid_rewrite H in H');
        let T := type of H in
        fold (id T) in H
    end; unfold id in *.

Ltac rewrite_relation_equivalence_right :=
  repeat match goal with
    | H : ?R1 <~> ?R2 |- _ =>
        try setoid_rewrite <- H;
        (on_all_hyp: fun H' => assert_fails (unify H H'); unmark H; setoid_rewrite <- H in H');
        let T := type of H in
        fold (id T) in H
    end; unfold id in *.

Ltac clear_relation_equivalence :=
  repeat match goal with
    | H : ?R1 <~> ?R2 |- _ =>
        (unify R1 R2; clear H) + (is_var R1; clear R1 H) + (is_var R2; clear R2 H)
    end.

Ltac apply_relation_equivalence :=
  clear_relation_equivalence;
  rewrite_relation_equivalence_right;
  clear_relation_equivalence;
  rewrite_relation_equivalence_left;
  clear_relation_equivalence.

Lemma per_univ_elem_right_irrel : forall i i' R a b R' b',
    {{ DF a b per_univ_elem i R }} ->
    {{ DF a b' per_univ_elem i' R' }} ->
    (R <~> R').
Proof with (destruct_rel_mod_eval; destruct_rel_mod_app; functional_eval_rewrite_clear; econstructor; intuition).
  simpl.
  intros * Horig.
  remember a as a' in |- *.
  gen a' b' R'.
  induction Horig using per_univ_elem_ind; intros * Heq Hright;
    subst; basic_invert_per_univ_elem Hright; unfold per_univ;
    intros;
    apply_relation_equivalence;
    try reflexivity.
  specialize (IHHorig _ _ _ eq_refl equiv_a_a').
  split; intros.
  - rename equiv_c_c' into equiv0_c_c'.
    assert (equiv_c_c' : in_rel c c') by firstorder...
  - assert (equiv0_c_c' : in_rel0 c c') by firstorder...
  - assert (point_rel <~> point_rel0) by mauto 3.
    etransitivity; [apply per_eq_morphism_relation_equivalence3 | apply per_eq_morphism_relation_equivalence1]; eauto.
    etransitivity; [symmetry |]; intuition.
Qed.

#[local]
Ltac per_univ_elem_right_irrel_assert1 :=
  match goal with
  | H1 : {{ DF ^?a ^?b per_univ_elem ?i ?R1 }},
      H2 : {{ DF ^?a ^?b' per_univ_elem ?i' ?R2 }} |- _ =>
      assert_fails (unify R1 R2);
      match goal with
      | H : R1 <~> R2 |- _ => fail 1
      | H : R2 <~> R1 |- _ => fail 1
      | _ => assert (R1 <~> R2) by (eapply per_univ_elem_right_irrel; [apply H1 | apply H2])
      end
  end.
#[local]
Ltac per_univ_elem_right_irrel_assert := repeat per_univ_elem_right_irrel_assert1.

Lemma per_univ_elem_sym : forall i R a b,
    {{ DF a b per_univ_elem i R }} ->
    {{ DF b a per_univ_elem i R }} /\
      (forall m m',
          {{ Dom m m' R }} ->
          {{ Dom m' m R }}).
Proof with mautosolve.
  simpl.
  induction 1 using per_univ_elem_ind; subst.
  - split.
    + apply per_univ_elem_core_univ'; firstorder.
    + intros.
      rewrite H1 in *.
      destruct_by_head per_univ.
      eexists.
      eapply proj1...
  - split; [basic_per_univ_elem_econstructor | intros; apply_relation_equivalence]...
  - destruct_conjs.
    split.
    + basic_per_univ_elem_econstructor; eauto.
      intros.
      assert (in_rel c' c) by eauto.
      assert (in_rel c c) by (etransitivity; eassumption).
      destruct_rel_mod_eval.
      functional_eval_rewrite_clear.
      econstructor; eauto.
      per_univ_elem_right_irrel_assert.
      apply_relation_equivalence.
      eassumption.
    + apply_relation_equivalence.
      intros.
      assert (in_rel c' c) by eauto.
      assert (in_rel c c) by (etransitivity; eassumption).
      destruct_rel_mod_eval.
      destruct_rel_mod_app.
      functional_eval_rewrite_clear.
      econstructor; eauto.
      per_univ_elem_right_irrel_assert.
      intuition.
  - destruct_conjs.
    split; [basic_per_univ_elem_econstructor | apply_relation_equivalence]; mauto 3.
    apply_relation_equivalence.
    etransitivity; [apply per_eq_morphism_relation_equivalence2 | apply per_eq_morphism_relation_equivalence3]; mauto 3.
  - split; [econstructor | intros; apply_relation_equivalence]...
Qed.

Corollary per_univ_sym : forall i R a b,
    {{ DF a b per_univ_elem i R }} ->
    {{ DF b a per_univ_elem i R }}.
Proof.
  intros * ?%per_univ_elem_sym.
  firstorder.
Qed.

Corollary per_univ_sym' : forall i a b,
    {{ Dom a b per_univ i }} ->
    {{ Dom b a per_univ i }}.
Proof.
  intros * [? ?%per_univ_elem_sym].
  firstorder.
Qed.

Corollary per_elem_sym : forall i R a b m m',
    {{ DF a b per_univ_elem i R }} ->
    {{ Dom m m' R }} ->
    {{ Dom m' m R }}.
Proof.
  intros * ?%per_univ_elem_sym.
  firstorder.
Qed.

Corollary per_univ_elem_left_irrel : forall i i' R a b R' a',
    {{ DF a b per_univ_elem i R }} ->
    {{ DF a' b per_univ_elem i' R' }} ->
    (R <~> R').
Proof.
  intros * ?%per_univ_sym ?%per_univ_sym.
  eauto using per_univ_elem_right_irrel.
Qed.

Corollary per_univ_elem_cross_irrel : forall i i' R a b R' b',
    {{ DF a b per_univ_elem i R }} ->
    {{ DF b' a per_univ_elem i' R' }} ->
    (R <~> R').
Proof.
  intros * ? ?%per_univ_sym.
  eauto using per_univ_elem_right_irrel.
Qed.

Ltac do_per_univ_elem_irrel_assert1 :=
  let tactic_error o1 o2 := fail 2 "per_univ_elem_irrel biconditional between" o1 "and" o2 "cannot be solved" in
  match goal with
  | H1 : {{ DF ^?a ^_ per_univ_elem ?i ?R1 }},
      H2 : {{ DF ^?a ^_ per_univ_elem ?i' ?R2 }} |- _ =>
      assert_fails (unify R1 R2);
      match goal with
      | H : R1 <~> R2 |- _ => fail 1
      | H : R2 <~> R1 |- _ => fail 1
      | _ => assert (R1 <~> R2) by (eapply per_univ_elem_right_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
      end
  | H1 : {{ DF ^_ ^?b per_univ_elem ?i ?R1 }},
      H2 : {{ DF ^_ ^?b per_univ_elem ?i' ?R2 }} |- _ =>
      assert_fails (unify R1 R2);
      match goal with
      | H : R1 <~> R2 |- _ => fail 1
      | H : R2 <~> R1 |- _ => fail 1
      | _ => assert (R1 <~> R2) by (eapply per_univ_elem_left_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
      end
  | H1 : {{ DF ^?a ^_ per_univ_elem ?i ?R1 }},
      H2 : {{ DF ^_ ^?a per_univ_elem ?i' ?R2 }} |- _ =>
      
Order matters less here as H1 and H2 cannot be exchanged
      assert_fails (unify R1 R2);
      match goal with
      | H : R1 <~> R2 |- _ => fail 1
      | H : R2 <~> R1 |- _ => fail 1
      | _ => assert (R1 <~> R2) by (eapply per_univ_elem_cross_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
      end
  end.

Ltac do_per_univ_elem_irrel_assert :=
  repeat do_per_univ_elem_irrel_assert1.

Ltac handle_per_univ_elem_irrel :=
  functional_eval_rewrite_clear;
  do_per_univ_elem_irrel_assert;
  apply_relation_equivalence;
  clear_dups.

Lemma per_univ_elem_trans : forall i R a1 a2,
    per_univ_elem i R a1 a2 ->
    (forall j a3,
        per_univ_elem j R a2 a3 ->
        per_univ_elem i R a1 a3) /\
      (forall m1 m2 m3,
          R m1 m2 ->
          R m2 m3 ->
          R m1 m3).
Proof with (basic_per_univ_elem_econstructor; mautosolve 4).
  induction 1 using per_univ_elem_ind;
    [> split;
     [ intros * HT2; basic_invert_per_univ_elem HT2
     | intros * HTR1 HTR2; apply_relation_equivalence ] ..]; mauto.
  - (* univ case *)
    subst.
    destruct HTR1, HTR2.
    functional_eval_rewrite_clear.
    handle_per_univ_elem_irrel.
    eexists.
    specialize (H2 _ _ _ H0) as [].
    intuition.
  - (* nat case *)
    idtac...
  - (* pi case *)
    destruct_conjs.
    basic_per_univ_elem_econstructor; eauto.
    + handle_per_univ_elem_irrel.
      intuition.
    + intros.
      handle_per_univ_elem_irrel.
      assert (in_rel c c') by firstorder.
      assert (in_rel c c) by intuition.
      assert (in_rel0 c c) by intuition.
      destruct_rel_mod_eval.
      functional_eval_rewrite_clear.
      handle_per_univ_elem_irrel...
  - (* fun case *)
    intros.
    assert (in_rel c c) by intuition.
    destruct_rel_mod_eval.
    destruct_rel_mod_app.
    handle_per_univ_elem_irrel.
    econstructor; eauto.
    intuition.
  - (* eq case *)
    destruct_conjs.
    handle_per_univ_elem_irrel.
    basic_per_univ_elem_econstructor; intuition.
    bulky_rewrite1.
    reflexivity.
  - (* neut case *)
    idtac...
Qed.

Corollary per_univ_trans : forall i j R a1 a2 a3,
    per_univ_elem i R a1 a2 ->
    per_univ_elem j R a2 a3 ->
    per_univ_elem i R a1 a3.
Proof.
  intros * ?%per_univ_elem_trans.
  firstorder.
Qed.

Corollary per_univ_trans' : forall i j a1 a2 a3,
    {{ Dom a1 a2 per_univ i }} ->
    {{ Dom a2 a3 per_univ j }} ->
    {{ Dom a1 a3 per_univ i }}.
Proof.
  intros * [? ?] [? ?].
  handle_per_univ_elem_irrel.
  firstorder mauto using per_univ_trans.
Qed.

Corollary per_elem_trans : forall i R a1 a2 m1 m2 m3,
    per_univ_elem i R a1 a2 ->
    R m1 m2 ->
    R m2 m3 ->
    R m1 m3.
Proof.
  intros * ?% per_univ_elem_trans.
  firstorder.
Qed.

#[export]
Instance per_univ_PER {i R} : PER (per_univ_elem i R).
Proof.
  split.
  - auto using per_univ_sym.
  - eauto using per_univ_trans.
Qed.

#[export]
Instance per_univ_PER' {i} : PER (per_univ i).
Proof.
  split.
  - auto using per_univ_sym'.
  - eauto using per_univ_trans'.
Qed.

#[export]
Instance per_elem_PER {i R a b} `(H : per_univ_elem i R a b) : PER R.
Proof.
  split.
  - pose proof (fun m m' => per_elem_sym _ _ _ _ m m' H). eauto.
  - pose proof (fun m0 m1 m2 => per_elem_trans _ _ _ _ m0 m1 m2 H); eauto.
Qed.

These lemmas get rid of the unnecessary PER premises.
Lemma per_univ_elem_pi' :
  forall i a a' ρ B ρ' B'
    (in_rel : relation domain)
    (out_rel : forall {c c'} (equiv_c_c' : {{ Dom c c' in_rel }}), relation domain)
    elem_rel,
    {{ DF a a' per_univ_elem i in_rel}} ->
    (forall {c c'} (equiv_c_c' : {{ Dom c c' in_rel }}),
        rel_mod_eval (per_univ_elem i) B d{{{ ρ c }}} B' d{{{ ρ' c' }}} (out_rel equiv_c_c')) ->
    (elem_rel <~> fun f f' => forall c c' (equiv_c_c' : {{ Dom c c' in_rel }}), rel_mod_app f c f' c' (out_rel equiv_c_c')) ->
    {{ DF Π a ρ B Π a' ρ' B' per_univ_elem i elem_rel }}.
Proof.
  intros.
  basic_per_univ_elem_econstructor; eauto.
  typeclasses eauto.
Qed.

Lemma per_univ_elem_eq' :
  forall (i : nat) {a a' m1 m1' m2 m2' : domain} (point_rel elem_rel : relation domain),
    {{ DF a a' per_univ_elem i point_rel }} ->
    {{ Dom m1 m1' point_rel }} ->
    {{ Dom m2 m2' point_rel }} ->
    elem_rel <~> per_eq point_rel m1 m2' ->
    {{ DF Eq a m1 m2 Eq a' m1' m2' per_univ_elem i elem_rel }}.
Proof.
  intros.
  basic_per_univ_elem_econstructor; eauto.
  typeclasses eauto.
Qed.

Ltac per_univ_elem_econstructor :=
  (repeat intro; hnf; (eapply per_univ_elem_pi' || eapply per_univ_elem_eq')) + basic_per_univ_elem_econstructor.

#[export]
Hint Resolve per_univ_elem_pi' per_univ_elem_eq' : mctt.

Lemma per_univ_elem_pi_clean_inversion : forall {i j a a' in_rel ρ ρ' B B' elem_rel},
    {{ DF a a' per_univ_elem i in_rel }} ->
    {{ DF Π a ρ B Π a' ρ' B' per_univ_elem j elem_rel }} ->
    exists (out_rel : forall {c c'} (equiv_c_c' : {{ Dom c c' in_rel }}), relation domain),
      (forall c c' (equiv_c_c' : {{ Dom c c' in_rel }}),
          rel_mod_eval (per_univ_elem j) B d{{{ ρ c }}} B' d{{{ ρ' c' }}} (out_rel equiv_c_c')) /\
        (elem_rel <~> fun f f' => forall c c' (equiv_c_c' : {{ Dom c c' in_rel }}), rel_mod_app f c f' c' (out_rel equiv_c_c')).
Proof.
  intros * Ha .
  basic_invert_per_univ_elem .
  handle_per_univ_elem_irrel.
  eexists.
  split.
  - instantiate (1 := fun c c' (equiv_c_c' : in_rel c c') m m' =>
                        forall R,
                          rel_typ j B d{{{ ρ c }}} B' d{{{ ρ' c' }}} R ->
                          R m m').
    intros.
    assert (in_rel0 c c') by intuition.
    (on_all_hyp: destruct_rel_by_assumption in_rel0).
    econstructor; eauto.
    apply -> per_univ_elem_morphism_iff; eauto.
    split; intuition.
    destruct_by_head rel_typ.
    handle_per_univ_elem_irrel.
    intuition.
  - split; intros;
      [assert (in_rel0 c c') by intuition; (on_all_hyp: destruct_rel_by_assumption in_rel0)
      | assert (in_rel c c') by intuition; (on_all_hyp: destruct_rel_by_assumption in_rel)];
      econstructor; intuition.
    destruct_by_head rel_typ.
    handle_per_univ_elem_irrel.
    intuition.
Qed.

Ltac invert_per_univ_elem H :=
  (unshelve eapply (per_univ_elem_pi_clean_inversion _) in H; shelve_unifiable; [eassumption |]; destruct H as [? []])
  + basic_invert_per_univ_elem H.

Ltac invert_per_univ_elems := match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).

Lemma per_univ_elem_cumu : forall i a0 a1 R,
    {{ DF a0 a1 per_univ_elem i R }} ->
    {{ DF a0 a1 per_univ_elem (S i) R }}.
Proof with solve [eauto].
  simpl.
  induction 1 using per_univ_elem_ind; subst;
    per_univ_elem_econstructor; eauto.
  intros.
  destruct_rel_mod_eval.
  econstructor...
Qed.

#[export]
Hint Resolve per_univ_elem_cumu : mctt.

Lemma per_univ_elem_cumu_ge : forall i i' a0 a1 R,
    i <= i' ->
    {{ DF a0 a1 per_univ_elem i R }} ->
    {{ DF a0 a1 per_univ_elem i' R }}.
Proof with mautosolve.
  induction 1...
Qed.

#[export]
Hint Resolve per_univ_elem_cumu_ge : mctt.

Lemma per_univ_elem_cumu_max_left : forall i j a0 a1 R,
    {{ DF a0 a1 per_univ_elem i R }} ->
    {{ DF a0 a1 per_univ_elem (max i j) R }}.
Proof with mautosolve.
  intros.
  assert (i <= max i j) by lia...
Qed.

Lemma per_univ_elem_cumu_max_right : forall i j a0 a1 R,
    {{ DF a0 a1 per_univ_elem j R }} ->
    {{ DF a0 a1 per_univ_elem (max i j) R }}.
Proof with mautosolve.
  intros.
  assert (j <= max i j) by lia...
Qed.

Lemma per_subtyp_to_univ_elem : forall a b i,
    {{ Sub a <: b at i }} ->
    exists R R',
      {{ DF a a per_univ_elem i R }} /\
        {{ DF b b per_univ_elem i R' }}.
Proof.
  destruct 1; do 2 eexists; mauto;
    split;
    try (etransitivity; try eassumption; symmetry; eassumption);
    per_univ_elem_econstructor; mauto 3;
    try apply Equivalence_Reflexive.

  lia.
Qed.

Lemma per_elem_subtyping : forall A B i,
    {{ Sub A <: B at i }} ->
    forall R R' a b,
      {{ DF A A per_univ_elem i R }} ->
      {{ DF B B per_univ_elem i R' }} ->
      R a b ->
      R' a b.
Proof.
  induction 1; intros;
    handle_per_univ_elem_irrel;
    saturate_refl;
    invert_per_univ_elems;
    handle_per_univ_elem_irrel;
    clear_refl_eqs;
    trivial.
  - firstorder mauto.
  - intros.
    handle_per_univ_elem_irrel.
    destruct_rel_mod_eval.
    saturate_refl_for per_univ_elem.
    destruct_rel_mod_app.
    simplify_evals.
    econstructor; eauto.
    intuition.
Qed.

Lemma per_elem_subtyping_gen : forall a b i a' b' R R' m n,
    {{ Sub a <: b at i }} ->
    {{ DF a a' per_univ_elem i R }} ->
    {{ DF b b' per_univ_elem i R' }} ->
    R m n ->
    R' m n.
Proof.
  intros.
  eapply per_elem_subtyping; saturate_refl; try eassumption.
Qed.

Lemma per_subtyp_refl1 : forall a b i R,
    {{ DF a b per_univ_elem i R }} ->
    {{ Sub a <: b at i }}.
Proof.
  simpl; induction 1 using per_univ_elem_ind;
    subst;
    mauto;
    destruct_all.
    assert ({{ DF Π a ρ B Π a' ρ' B' per_univ_elem i elem_rel }})
      by (per_univ_elem_econstructor; intuition; destruct_rel_mod_eval; mauto).
    saturate_refl_for per_univ_elem.
    econstructor; eauto.
    intros;
      destruct_rel_mod_eval;
      functional_eval_rewrite_clear;
      trivial.
Qed.

#[export]
Hint Resolve per_subtyp_refl1 : mctt.

Lemma per_subtyp_refl2 : forall a b i R,
    {{ DF a b per_univ_elem i R }} ->
    {{ Sub b <: a at i }}.
Proof.
  intros.
  symmetry in H.
  eauto using per_subtyp_refl1.
Qed.

#[export]
Hint Resolve per_subtyp_refl2 : mctt.

Lemma per_subtyp_trans : forall a1 a2 i,
    {{ Sub a1 <: a2 at i }} ->
    forall a3,
      {{ Sub a2 <: a3 at i }} ->
      {{ Sub a1 <: a3 at i }}.
Proof.
  induction 1; intros ? Hsub; simpl in *.
  1,2,5: progressive_inversion; mauto.
  - econstructor; lia.
  - dependent destruction Hsub.
    handle_per_univ_elem_irrel.
    econstructor; eauto.
    + etransitivity; eassumption.
    + intros.
      invert_per_univ_elems.
      handle_per_univ_elem_irrel.
      saturate_refl_for in_rel1.
      destruct_rel_mod_eval.
      intuition.
  - dependent destruction Hsub.
    handle_per_univ_elem_irrel.
    econstructor; etransitivity; eauto.
Qed.

#[export]
Hint Resolve per_subtyp_trans : mctt.

#[export]
Instance per_subtyp_trans_ins i : Transitive (per_subtyp i).
Proof.
  eauto using per_subtyp_trans.
Qed.

Lemma per_subtyp_transp : forall a b i a' b' R R',
    {{ Sub a <: b at i }} ->
    {{ DF a a' per_univ_elem i R }} ->
    {{ DF b b' per_univ_elem i R' }} ->
    {{ Sub a' <: b' at i }}.
Proof.
  mauto using per_subtyp_refl1, per_subtyp_refl2.
Qed.

Lemma per_subtyp_cumu : forall a1 a2 i,
    {{ Sub a1 <: a2 at i }} ->
    forall j,
      i <= j ->
      {{ Sub a1 <: a2 at j }}.
Proof.
  induction 1; intros; econstructor; mauto.
  lia.
Qed.

#[export]
Hint Resolve per_subtyp_cumu : mctt.

Lemma per_subtyp_cumu_left : forall a1 a2 i j,
    {{ Sub a1 <: a2 at i }} ->
    {{ Sub a1 <: a2 at max i j }}.
Proof.
  intros. eapply per_subtyp_cumu; try eassumption.
  lia.
Qed.

Lemma per_subtyp_cumu_right : forall a1 a2 i j,
    {{ Sub a1 <: a2 at i }} ->
    {{ Sub a1 <: a2 at max j i }}.
Proof.
  intros. eapply per_subtyp_cumu; try eassumption.
  lia.
Qed.

Add Parametric Morphism : per_ctx_env
    with signature (@relation_equivalence env) ==> eq ==> eq ==> iff as per_ctx_env_morphism_iff.
Proof with mautosolve.
  intros R R' HRR'.
  split; intro Horig; [gen R' | gen R];
    induction Horig; econstructor;
    apply_relation_equivalence; try reflexivity...
Qed.

Add Parametric Morphism : per_ctx_env
    with signature (@relation_equivalence env) ==> (@relation_equivalence ctx) as per_ctx_env_morphism_relation_equivalence.
Proof.
  intros * HRR' Γ Γ'.
  simpl.
  rewrite HRR'.
  reflexivity.
Qed.

Lemma per_ctx_env_right_irrel : forall Γ Δ Δ' R R',
    {{ DF Γ Δ per_ctx_env R }} ->
    {{ DF Γ Δ' per_ctx_env R' }} ->
    R <~> R'.
Proof with (destruct_rel_typ; handle_per_univ_elem_irrel; eexists; intuition).
  intros * Horig; gen Δ' R'.
  induction Horig; intros * Hright;
    inversion Hright; subst;
    apply_relation_equivalence;
    try reflexivity.
  specialize (IHHorig _ _ equiv_Γ_Γ'0).
  intros ρ ρ'.
  split; intros Hcons; dependent destruction Hcons.
  - assert {{ Dom ρ ρ' tail_rel0 }} by intuition...
  - assert {{ Dom ρ ρ' tail_rel }} by intuition...
Qed.

Lemma per_ctx_env_sym : forall Γ Δ R,
    {{ DF Γ Δ per_ctx_env R }} ->
    {{ DF Δ Γ per_ctx_env R }} /\
      (forall ρ ρ',
          {{ Dom ρ ρ' R }} ->
          {{ Dom ρ' ρ R }}).
Proof with solve [intuition].
  simpl.
  induction 1; split; simpl in *; destruct_conjs; try econstructor; intuition;
    pose proof (@relation_equivalence_pointwise env).
  - assert (tail_rel ρ' ρ) by eauto.
    assert (tail_rel ρ ρ) by (etransitivity; eassumption).
    destruct_rel_mod_eval.
    handle_per_univ_elem_irrel.
    econstructor; eauto.
    symmetry...
  - apply_relation_equivalence.
    destruct_by_head cons_per_ctx_env.
    assert (tail_rel d{{{ ρ' }}} d{{{ ρ }}}) by eauto.
    assert (tail_rel d{{{ ρ }}} d{{{ ρ }}}) by (etransitivity; eassumption).
    destruct_rel_mod_eval.
    eexists; symmetry; handle_per_univ_elem_irrel; intuition.
Qed.

Corollary per_ctx_sym : forall Γ Δ R,
    {{ DF Γ Δ per_ctx_env R }} ->
    {{ DF Δ Γ per_ctx_env R }}.
Proof.
  intros * ?%per_ctx_env_sym.
  firstorder.
Qed.

Corollary per_env_sym : forall Γ Δ R ρ ρ',
    {{ DF Γ Δ per_ctx_env R }} ->
    {{ Dom ρ ρ' R }} ->
    {{ Dom ρ' ρ R }}.
Proof.
  intros * ?%per_ctx_env_sym.
  firstorder.
Qed.

Corollary per_ctx_env_left_irrel : forall Γ Γ' Δ R R',
    {{ DF Γ Δ per_ctx_env R }} ->
    {{ DF Γ' Δ per_ctx_env R' }} ->
    R <~> R'.
Proof.
  intros * ?%per_ctx_sym ?%per_ctx_sym.
  eauto using per_ctx_env_right_irrel.
Qed.

Corollary per_ctx_env_cross_irrel : forall Γ Δ Δ' R R',
    {{ DF Γ Δ per_ctx_env R }} ->
    {{ DF Δ' Γ per_ctx_env R' }} ->
    R <~> R'.
Proof.
  intros * ? ?%per_ctx_sym.
  eauto using per_ctx_env_right_irrel.
Qed.

Ltac do_per_ctx_env_irrel_assert1 :=
  let tactic_error o1 o2 := fail 3 "per_ctx_env_irrel equality between" o1 "and" o2 "cannot be solved" in
  match goal with
    | H1 : {{ DF ^?Γ ^_ per_ctx_env ?R1 }},
        H2 : {{ DF ^?Γ ^_ per_ctx_env ?R2 }} |- _ =>
        assert_fails (unify R1 R2);
        match goal with
        | H : R1 <~> R2 |- _ => fail 1
        | H : R2 <~> R1 |- _ => fail 1
        | _ => assert (R1 <~> R2) by (eapply per_ctx_env_right_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
        end
    | H1 : {{ DF ^_ ^?Δ per_ctx_env ?R1 }},
        H2 : {{ DF ^_ ^?Δ per_ctx_env ?R2 }} |- _ =>
        assert_fails (unify R1 R2);
        match goal with
        | H : R1 <~> R2 |- _ => fail 1
        | H : R2 <~> R1 |- _ => fail 1
        | _ => assert (R1 <~> R2) by (eapply per_ctx_env_left_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
        end
    | H1 : {{ DF ^?Γ ^_ per_ctx_env ?R1 }},
        H2 : {{ DF ^_ ^?Γ per_ctx_env ?R2 }} |- _ =>
        
Order matters less here as H1 and H2 cannot be exchanged
        assert_fails (unify R1 R2);
        match goal with
        | H : R1 <~> R2 |- _ => fail 1
        | H : R2 <~> R1 |- _ => fail 1
        | _ => assert (R1 <~> R2) by (eapply per_ctx_env_cross_irrel; [apply H1 | apply H2]) || tactic_error R1 R2
        end
    end.

Ltac do_per_ctx_env_irrel_assert :=
  repeat do_per_ctx_env_irrel_assert1.

Ltac handle_per_ctx_env_irrel :=
  functional_eval_rewrite_clear;
  do_per_ctx_env_irrel_assert;
  apply_relation_equivalence;
  clear_dups.

Lemma per_ctx_env_trans : forall Γ1 Γ2 R,
    {{ DF Γ1 Γ2 per_ctx_env R }} ->
    (forall Γ3,
        {{ DF Γ2 Γ3 per_ctx_env R }} ->
        {{ DF Γ1 Γ3 per_ctx_env R }}) /\
      (forall ρ1 ρ2 ρ3,
          {{ Dom ρ1 ρ2 R }} ->
          {{ Dom ρ2 ρ3 R }} ->
          {{ Dom ρ1 ρ3 R }}).
Proof with solve [eauto using per_univ_trans].
  simpl.
  induction 1; subst;
    [> split;
     [ inversion 1; subst; eauto
     | intros; destruct_conjs; eauto] ..];
    pose proof (@relation_equivalence_pointwise env);
    handle_per_ctx_env_irrel;
    try solve [intuition].
  - econstructor; only 4: reflexivity; eauto.
    + apply_relation_equivalence. intuition.
    + intros.
      assert (tail_rel ρ ρ) by intuition.
      assert (tail_rel0 ρ ρ') by intuition.
      destruct_rel_typ.
      handle_per_univ_elem_irrel.
      econstructor; intuition.
This one cannot be replaced with `etransitivity` as we need different `i`s.
      eapply per_univ_trans; [| eassumption]; eassumption.
  - destruct_by_head cons_per_ctx_env.
    assert (tail_rel d{{{ ρ }}} d{{{ ρ' }}}) by eauto.
    destruct_rel_typ.
    handle_per_univ_elem_irrel.
    eexists.
    apply_relation_equivalence.
    etransitivity; intuition.
Qed.

Corollary per_ctx_trans : forall Γ1 Γ2 Γ3 R,
    {{ DF Γ1 Γ2 per_ctx_env R }} ->
    {{ DF Γ2 Γ3 per_ctx_env R }} ->
    {{ DF Γ1 Γ3 per_ctx_env R }}.
Proof.
  intros * ?% per_ctx_env_trans.
  firstorder.
Qed.

Corollary per_env_trans : forall Γ1 Γ2 R ρ1 ρ2 ρ3,
    {{ DF Γ1 Γ2 per_ctx_env R }} ->
    {{ Dom ρ1 ρ2 R }} ->
    {{ Dom ρ2 ρ3 R }} ->
    {{ Dom ρ1 ρ3 R }}.
Proof.
  intros * ?% per_ctx_env_trans.
  firstorder.
Qed.

#[export]
Instance per_ctx_PER {R} : PER (per_ctx_env R).
Proof.
  split.
  - auto using per_ctx_sym.
  - eauto using per_ctx_trans.
Qed.

#[export]
Instance per_env_PER {R Γ Δ} (H : per_ctx_env R Γ Δ) : PER R.
Proof.
  split.
  - pose proof (fun ρ ρ' => per_env_sym _ _ _ ρ ρ' H); auto.
  - pose proof (fun ρ0 ρ1 ρ2 => per_env_trans _ _ _ ρ0 ρ1 ρ2 H); eauto.
Qed.

This lemma removes the PER argument
Lemma per_ctx_env_cons' : forall {Γ Γ' i A A' tail_rel}
                             (head_rel : forall {ρ ρ'} (equiv_ρ_ρ' : {{ Dom ρ ρ' tail_rel }}), relation domain)
                             env_rel,
    {{ EF Γ Γ' per_ctx_env tail_rel }} ->
    (forall {ρ ρ'} (equiv_ρ_ρ' : {{ Dom ρ ρ' tail_rel }}),
        rel_typ i A ρ A' ρ' (head_rel equiv_ρ_ρ')) ->
    (env_rel <~> cons_per_ctx_env tail_rel (@head_rel)) ->
    {{ EF Γ, A Γ', A' per_ctx_env env_rel }}.
Proof.
  intros.
  econstructor; eauto.
  typeclasses eauto.
Qed.

#[export]
Hint Resolve per_ctx_env_cons' : mctt.

Ltac per_ctx_env_econstructor :=
  (repeat intro; hnf; eapply per_ctx_env_cons') + econstructor.

Lemma per_ctx_env_cons_clean_inversion : forall {Γ Γ' env_relΓ A A' env_relΓA},
    {{ EF Γ Γ' per_ctx_env env_relΓ }} ->
    {{ EF Γ, A Γ', A' per_ctx_env env_relΓA }} ->
    exists i (head_rel : forall {ρ ρ'} (equiv_ρ_ρ' : {{ Dom ρ ρ' env_relΓ }}), relation domain),
      (forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ρ' env_relΓ }}),
          rel_typ i A ρ A' ρ' (head_rel equiv_ρ_ρ')) /\
        (env_relΓA <~> cons_per_ctx_env env_relΓ (@head_rel)).
Proof with intuition.
  intros * HΓA.
  inversion HΓA; subst.
  handle_per_ctx_env_irrel.
  eexists.
  eexists.
  split; intros.
  - instantiate (1 := fun ρ ρ' (equiv_ρ_ρ' : env_relΓ ρ ρ') m m' =>
                        forall R,
                          rel_typ i A ρ A' ρ' R ->
                          {{ Dom m m' R }}).
    assert (tail_rel ρ ρ') by intuition.
    (on_all_hyp: destruct_rel_by_assumption tail_rel).
    econstructor; eauto.
    apply -> per_univ_elem_morphism_iff; eauto.
    split; intros...
    destruct_by_head rel_typ.
    handle_per_univ_elem_irrel...
  - intros ρ ρ'.
    split; intros; destruct_by_head cons_per_ctx_env;
      assert {{ Dom ρ ρ' tail_rel }} by intuition;
      (on_all_hyp: destruct_rel_by_assumption tail_rel);
      unshelve eexists; intros...
    destruct_by_head rel_typ.
    handle_per_univ_elem_irrel...
Qed.

Ltac invert_per_ctx_env H :=
  (unshelve eapply (per_ctx_env_cons_clean_inversion _) in H; [eassumption | |]; destruct H as [? [? []]])
  + (inversion H; subst).

Ltac invert_per_ctx_envs := match_by_head per_ctx_env ltac:(fun H => directed invert_per_ctx_env H).

Ltac invert_per_ctx_envs_of rel := match_by_head (per_ctx_env rel) ltac:(fun H => directed invert_per_ctx_env H).

Lemma per_ctx_respects_length : forall {Γ Γ'},
    {{ Exp Γ Γ' per_ctx }} ->
    length Γ = length Γ'.
Proof.
  intros * [? H].
  induction H; simpl; congruence.
Qed.

Lemma per_ctx_subtyp_to_env : forall Γ Δ,
    {{ SubE Γ <: Δ }} ->
    exists R R',
      {{ EF Γ Γ per_ctx_env R }} /\
        {{ EF Δ Δ per_ctx_env R' }}.
Proof.
  destruct 1; destruct_all.
  - repeat eexists; econstructor; apply Equivalence_Reflexive.
  - eauto.
Qed.

Lemma per_ctx_env_subtyping : forall Γ Δ,
    {{ SubE Γ <: Δ }} ->
    forall R R' ρ ρ',
      {{ EF Γ Γ per_ctx_env R }} ->
      {{ EF Δ Δ per_ctx_env R' }} ->
      R ρ ρ' ->
      R' ρ ρ'.
Proof.
  induction 1; intros;
    handle_per_ctx_env_irrel;
    invert_per_ctx_envs;
    apply_relation_equivalence;
    trivial.

  destruct_by_head cons_per_ctx_env.
  assert {{ Dom ρ ρ' tail_rel0 }} by intuition.
  unshelve eexists; [eassumption |].
  destruct_rel_typ.
  eapply per_elem_subtyping with (i := max x (max i0 i)); try eassumption.
  - eauto using per_subtyp_cumu_right.
  - saturate_refl.
    eauto using per_univ_elem_cumu_max_left.
  - saturate_refl.
    eauto using per_univ_elem_cumu_max_left, per_univ_elem_cumu_max_right.
Qed.

Lemma per_ctx_subtyp_refl1 : forall Γ Δ R,
    {{ EF Γ Δ per_ctx_env R }} ->
    {{ SubE Γ <: Δ }}.
Proof.
  induction 1; mauto.

  assert (exists R, {{ EF Γ , A Γ' , A' per_ctx_env R }}) by
    (eexists; eapply per_ctx_env_cons'; eassumption).
  destruct_all.
  econstructor; try solve [saturate_refl; mauto 2].
  intros.
  destruct_rel_typ.
  simplify_evals.
  eauto using per_subtyp_refl1.
Qed.

Lemma per_ctx_subtyp_refl2 : forall Γ Δ R,
    {{ EF Γ Δ per_ctx_env R }} ->
    {{ SubE Δ <: Γ }}.
Proof.
  intros. symmetry in H. eauto using per_ctx_subtyp_refl1.
Qed.

Lemma per_ctx_subtyp_trans : forall Γ1 Γ2,
    {{ SubE Γ1 <: Γ2 }} ->
    forall Γ3,
      {{ SubE Γ2 <: Γ3 }} ->
      {{ SubE Γ1 <: Γ3 }}.
Proof.
  induction 1; intros;
    dir_inversion_by_head per_ctx_subtyp; subst;
    repeat invert_per_ctx_envs;
    mauto 1; clear_PER.

  handle_per_ctx_env_irrel.
  econstructor; try eassumption.
  - firstorder.
  - instantiate (1 := max i i0).
    intros.
    assert {{ Dom ρ ρ' tail_rel0 }}
      by (apply_relation_equivalence; eapply per_ctx_env_subtyping; revgoals; eassumption).
    saturate_refl_for tail_rel.
    destruct_rel_typ.
    handle_per_univ_elem_irrel.
    etransitivity; intuition mauto using per_subtyp_cumu_left, per_subtyp_cumu_right.
  - econstructor; intuition.
    + typeclasses eauto.
    + solve_refl.
  - econstructor; mauto 3.
    + typeclasses eauto.
    + solve_refl.
Qed.

#[export]
Hint Resolve per_ctx_subtyp_trans : mctt.

#[export]
Instance per_ctx_subtyp_trans_ins : Transitive per_ctx_subtyp.
Proof.
  eauto using per_ctx_subtyp_trans.
Qed.