Mctt.Core.Soundness.Weakening.Lemmas
From Coq Require Import Program.Equality.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Soundness.Weakening Require Import Definitions.
From Mctt.Core.Syntactic Require Export Corollaries.
Import Syntax_Notations.
Lemma weakening_escape : forall Γ σ Δ,
{{ Γ ⊢w σ : Δ }} ->
{{ Γ ⊢s σ : Δ }}.
Proof.
induction 1;
match goal with
| H : _ |- _ =>
solve [gen_presup H; trivial]
end.
Qed.
#[export]
Hint Resolve weakening_escape : mctt.
Ltac saturate_weakening_escape1 :=
match goal with
| H : {{ ^_ ⊢w ^_ : ^_ }} |- _ =>
pose proof (weakening_escape _ _ _ H);
fail_if_dup
end.
Ltac saturate_weakening_escape :=
repeat saturate_weakening_escape1.
Lemma weakening_resp_equiv : forall Γ σ σ' Δ,
{{ Γ ⊢w σ : Δ }} ->
{{ Γ ⊢s σ ≈ σ' : Δ }} ->
{{ Γ ⊢w σ' : Δ }}.
Proof.
induction 1; mauto.
Qed.
Lemma ctxeq_weakening : forall Γ σ Δ,
{{ Γ ⊢w σ : Δ }} ->
forall Γ',
{{ ⊢ Γ ≈ Γ' }} ->
{{ Γ' ⊢w σ : Δ }}.
Proof.
induction 1; mauto.
Qed.
Lemma ctxsub_weakening : forall Γ σ Δ,
{{ Γ ⊢w σ : Δ }} ->
forall Δ',
{{ ⊢ Δ ⊆ Δ' }} ->
{{ Γ ⊢w σ : Δ' }}.
Proof.
induction 1; mauto.
Qed.
Lemma weakening_conv : forall Γ σ Δ,
{{ Γ ⊢w σ : Δ }} ->
forall Δ',
{{ ⊢ Δ ≈ Δ' }} ->
{{ Γ ⊢w σ : Δ' }}.
Proof.
intros; mauto using ctxsub_weakening.
Qed.
#[export]
Hint Resolve ctxsub_weakening weakening_conv : mctt.
Lemma weakening_compose : forall Γ' σ' Γ'',
{{ Γ' ⊢w σ' : Γ'' }} ->
forall Γ σ,
{{ Γ ⊢w σ : Γ' }} ->
{{ Γ ⊢w σ' ∘ σ : Γ'' }}.
Proof with mautosolve.
induction 1; intros.
- gen_presup H.
assert {{ ⊢ Γ ⊆ Δ }} by mauto.
eapply weakening_resp_equiv; [mauto 2 |].
transitivity {{{ Id ∘ σ0 }}}...
- eapply wk_p; eauto.
transitivity {{{ (Wk ∘ τ) ∘ σ0 }}}; mauto 4.
eapply wf_sub_eq_compose_assoc; revgoals...
Qed.
#[export]
Hint Resolve weakening_compose : mctt.
Lemma weakening_id : forall Γ,
{{ ⊢ Γ }} ->
{{ Γ ⊢w Id : Γ }}.
Proof.
mauto.
Qed.
Lemma weakening_wk : forall Γ A,
{{ ⊢ Γ, A }} ->
{{ Γ, A ⊢w Wk : Γ }}.
Proof.
intros.
econstructor; mautosolve.
Qed.
#[export]
Hint Resolve weakening_id weakening_wk : mctt.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Soundness.Weakening Require Import Definitions.
From Mctt.Core.Syntactic Require Export Corollaries.
Import Syntax_Notations.
Lemma weakening_escape : forall Γ σ Δ,
{{ Γ ⊢w σ : Δ }} ->
{{ Γ ⊢s σ : Δ }}.
Proof.
induction 1;
match goal with
| H : _ |- _ =>
solve [gen_presup H; trivial]
end.
Qed.
#[export]
Hint Resolve weakening_escape : mctt.
Ltac saturate_weakening_escape1 :=
match goal with
| H : {{ ^_ ⊢w ^_ : ^_ }} |- _ =>
pose proof (weakening_escape _ _ _ H);
fail_if_dup
end.
Ltac saturate_weakening_escape :=
repeat saturate_weakening_escape1.
Lemma weakening_resp_equiv : forall Γ σ σ' Δ,
{{ Γ ⊢w σ : Δ }} ->
{{ Γ ⊢s σ ≈ σ' : Δ }} ->
{{ Γ ⊢w σ' : Δ }}.
Proof.
induction 1; mauto.
Qed.
Lemma ctxeq_weakening : forall Γ σ Δ,
{{ Γ ⊢w σ : Δ }} ->
forall Γ',
{{ ⊢ Γ ≈ Γ' }} ->
{{ Γ' ⊢w σ : Δ }}.
Proof.
induction 1; mauto.
Qed.
Lemma ctxsub_weakening : forall Γ σ Δ,
{{ Γ ⊢w σ : Δ }} ->
forall Δ',
{{ ⊢ Δ ⊆ Δ' }} ->
{{ Γ ⊢w σ : Δ' }}.
Proof.
induction 1; mauto.
Qed.
Lemma weakening_conv : forall Γ σ Δ,
{{ Γ ⊢w σ : Δ }} ->
forall Δ',
{{ ⊢ Δ ≈ Δ' }} ->
{{ Γ ⊢w σ : Δ' }}.
Proof.
intros; mauto using ctxsub_weakening.
Qed.
#[export]
Hint Resolve ctxsub_weakening weakening_conv : mctt.
Lemma weakening_compose : forall Γ' σ' Γ'',
{{ Γ' ⊢w σ' : Γ'' }} ->
forall Γ σ,
{{ Γ ⊢w σ : Γ' }} ->
{{ Γ ⊢w σ' ∘ σ : Γ'' }}.
Proof with mautosolve.
induction 1; intros.
- gen_presup H.
assert {{ ⊢ Γ ⊆ Δ }} by mauto.
eapply weakening_resp_equiv; [mauto 2 |].
transitivity {{{ Id ∘ σ0 }}}...
- eapply wk_p; eauto.
transitivity {{{ (Wk ∘ τ) ∘ σ0 }}}; mauto 4.
eapply wf_sub_eq_compose_assoc; revgoals...
Qed.
#[export]
Hint Resolve weakening_compose : mctt.
Lemma weakening_id : forall Γ,
{{ ⊢ Γ }} ->
{{ Γ ⊢w Id : Γ }}.
Proof.
mauto.
Qed.
Lemma weakening_wk : forall Γ A,
{{ ⊢ Γ, A }} ->
{{ Γ, A ⊢w Wk : Γ }}.
Proof.
intros.
econstructor; mautosolve.
Qed.
#[export]
Hint Resolve weakening_id weakening_wk : mctt.