Mctt.Core.Syntactic.CtxEq
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Syntactic Require Export CtxSub.
Import Syntax_Notations.
Lemma ctx_eq_refl : forall {Γ}, {{ ⊢ Γ }} -> {{ ⊢ Γ ≈ Γ }}.
Proof with mautosolve.
induction 1...
Qed.
#[export]
Hint Resolve ctx_eq_refl : mctt.
Lemma ctx_eq_sym : forall {Γ Δ}, {{ ⊢ Γ ≈ Δ }} -> {{ ⊢ Δ ≈ Γ }}.
Proof.
intros.
symmetry.
eassumption.
Qed.
#[export]
Hint Resolve ctx_eq_sym : mctt.
Lemma ctxeq_exp : forall {Γ Δ M A}, {{ ⊢ Γ ≈ Δ }} -> {{ Γ ⊢ M : A }} -> {{ Δ ⊢ M : A }}.
Proof. mauto. Qed.
Lemma ctxeq_exp_eq : forall {Γ Δ M M' A}, {{ ⊢ Γ ≈ Δ }} -> {{ Γ ⊢ M ≈ M' : A }} -> {{ Δ ⊢ M ≈ M' : A }}.
Proof. mauto. Qed.
Lemma ctxeq_sub : forall {Γ Δ σ Γ'}, {{ ⊢ Γ ≈ Δ }} -> {{ Γ ⊢s σ : Γ' }} -> {{ Δ ⊢s σ : Γ' }}.
Proof. mauto. Qed.
Lemma ctxeq_sub_eq : forall {Γ Δ σ σ' Γ'}, {{ ⊢ Γ ≈ Δ }} -> {{ Γ ⊢s σ ≈ σ' : Γ' }} -> {{ Δ ⊢s σ ≈ σ' : Γ' }}.
Proof. mauto. Qed.
Lemma ctxeq_subtyp : forall {Γ Δ A B}, {{ ⊢ Γ ≈ Δ }} -> {{ Γ ⊢ A ⊆ B }} -> {{ Δ ⊢ A ⊆ B }}.
Proof. mauto. Qed.
#[export]
Hint Resolve ctxeq_exp ctxeq_exp_eq ctxeq_sub ctxeq_sub_eq ctxeq_subtyp : mctt.
Lemma ctx_eq_trans : forall {Γ0 Γ1 Γ2}, {{ ⊢ Γ0 ≈ Γ1 }} -> {{ ⊢ Γ1 ≈ Γ2 }} -> {{ ⊢ Γ0 ≈ Γ2 }}.
Proof with mautosolve.
intros * HΓ01.
gen Γ2.
induction HΓ01 as [|Γ0 ? i01 T0 T1]; mauto.
inversion_clear 1 as [|? Γ2' i12 ? T2].
clear Γ2; rename Γ2' into Γ2.
set (i := max i01 i12).
assert {{ Γ0 ⊢ T0 : Type@i }} by mauto using lift_exp_max_left.
assert {{ Γ2 ⊢ T2 : Type@i }} by mauto using lift_exp_max_right.
assert {{ Γ0 ⊢ T0 ≈ T1 : Type@i }} by mauto using lift_exp_eq_max_left.
assert {{ Γ2 ⊢ T1 ≈ T2 : Type@i }} by mauto using lift_exp_eq_max_right.
assert {{ ⊢ Γ0 ≈ Γ2 }} by mauto.
assert {{ Γ0 ⊢ T0 ≈ T2 : Type@i }} by mauto.
econstructor...
Qed.
#[export]
Hint Resolve ctx_eq_trans : mctt.
#[export]
Instance wf_ctx_PER : PER wf_ctx_eq.
Proof.
split.
- eauto using ctx_eq_sym.
- eauto using ctx_eq_trans.
Qed.
Add Parametric Morphism : wf_exp
with signature wf_ctx_eq ==> eq ==> eq ==> iff as ctxeq_exp_morphism.
Proof.
intros. split; mauto 3.
Qed.
Add Parametric Morphism : wf_exp_eq
with signature wf_ctx_eq ==> eq ==> eq ==> eq ==> iff as ctxeq_exp_eq_morphism.
Proof.
intros. split; mauto 3.
Qed.
Add Parametric Morphism : wf_sub
with signature wf_ctx_eq ==> eq ==> eq ==> iff as ctxeq_sub_morphism.
Proof.
intros. split; mauto 3.
Qed.
Add Parametric Morphism : wf_sub_eq
with signature wf_ctx_eq ==> eq ==> eq ==> eq ==> iff as ctxeq_sub_eq_morphism.
Proof.
intros. split; mauto 3.
Qed.
Add Parametric Morphism : wf_subtyp
with signature wf_ctx_eq ==> eq ==> eq ==> iff as ctxeq_subtyp_morphism.
Proof.
intros. split; mauto 3.
Qed.
From Mctt.Core Require Import Base.
From Mctt.Core.Syntactic Require Export CtxSub.
Import Syntax_Notations.
Lemma ctx_eq_refl : forall {Γ}, {{ ⊢ Γ }} -> {{ ⊢ Γ ≈ Γ }}.
Proof with mautosolve.
induction 1...
Qed.
#[export]
Hint Resolve ctx_eq_refl : mctt.
Lemma ctx_eq_sym : forall {Γ Δ}, {{ ⊢ Γ ≈ Δ }} -> {{ ⊢ Δ ≈ Γ }}.
Proof.
intros.
symmetry.
eassumption.
Qed.
#[export]
Hint Resolve ctx_eq_sym : mctt.
Lemma ctxeq_exp : forall {Γ Δ M A}, {{ ⊢ Γ ≈ Δ }} -> {{ Γ ⊢ M : A }} -> {{ Δ ⊢ M : A }}.
Proof. mauto. Qed.
Lemma ctxeq_exp_eq : forall {Γ Δ M M' A}, {{ ⊢ Γ ≈ Δ }} -> {{ Γ ⊢ M ≈ M' : A }} -> {{ Δ ⊢ M ≈ M' : A }}.
Proof. mauto. Qed.
Lemma ctxeq_sub : forall {Γ Δ σ Γ'}, {{ ⊢ Γ ≈ Δ }} -> {{ Γ ⊢s σ : Γ' }} -> {{ Δ ⊢s σ : Γ' }}.
Proof. mauto. Qed.
Lemma ctxeq_sub_eq : forall {Γ Δ σ σ' Γ'}, {{ ⊢ Γ ≈ Δ }} -> {{ Γ ⊢s σ ≈ σ' : Γ' }} -> {{ Δ ⊢s σ ≈ σ' : Γ' }}.
Proof. mauto. Qed.
Lemma ctxeq_subtyp : forall {Γ Δ A B}, {{ ⊢ Γ ≈ Δ }} -> {{ Γ ⊢ A ⊆ B }} -> {{ Δ ⊢ A ⊆ B }}.
Proof. mauto. Qed.
#[export]
Hint Resolve ctxeq_exp ctxeq_exp_eq ctxeq_sub ctxeq_sub_eq ctxeq_subtyp : mctt.
Lemma ctx_eq_trans : forall {Γ0 Γ1 Γ2}, {{ ⊢ Γ0 ≈ Γ1 }} -> {{ ⊢ Γ1 ≈ Γ2 }} -> {{ ⊢ Γ0 ≈ Γ2 }}.
Proof with mautosolve.
intros * HΓ01.
gen Γ2.
induction HΓ01 as [|Γ0 ? i01 T0 T1]; mauto.
inversion_clear 1 as [|? Γ2' i12 ? T2].
clear Γ2; rename Γ2' into Γ2.
set (i := max i01 i12).
assert {{ Γ0 ⊢ T0 : Type@i }} by mauto using lift_exp_max_left.
assert {{ Γ2 ⊢ T2 : Type@i }} by mauto using lift_exp_max_right.
assert {{ Γ0 ⊢ T0 ≈ T1 : Type@i }} by mauto using lift_exp_eq_max_left.
assert {{ Γ2 ⊢ T1 ≈ T2 : Type@i }} by mauto using lift_exp_eq_max_right.
assert {{ ⊢ Γ0 ≈ Γ2 }} by mauto.
assert {{ Γ0 ⊢ T0 ≈ T2 : Type@i }} by mauto.
econstructor...
Qed.
#[export]
Hint Resolve ctx_eq_trans : mctt.
#[export]
Instance wf_ctx_PER : PER wf_ctx_eq.
Proof.
split.
- eauto using ctx_eq_sym.
- eauto using ctx_eq_trans.
Qed.
Add Parametric Morphism : wf_exp
with signature wf_ctx_eq ==> eq ==> eq ==> iff as ctxeq_exp_morphism.
Proof.
intros. split; mauto 3.
Qed.
Add Parametric Morphism : wf_exp_eq
with signature wf_ctx_eq ==> eq ==> eq ==> eq ==> iff as ctxeq_exp_eq_morphism.
Proof.
intros. split; mauto 3.
Qed.
Add Parametric Morphism : wf_sub
with signature wf_ctx_eq ==> eq ==> eq ==> iff as ctxeq_sub_morphism.
Proof.
intros. split; mauto 3.
Qed.
Add Parametric Morphism : wf_sub_eq
with signature wf_ctx_eq ==> eq ==> eq ==> eq ==> iff as ctxeq_sub_eq_morphism.
Proof.
intros. split; mauto 3.
Qed.
Add Parametric Morphism : wf_subtyp
with signature wf_ctx_eq ==> eq ==> eq ==> iff as ctxeq_subtyp_morphism.
Proof.
intros. split; mauto 3.
Qed.