Mctt.Core.Completeness.FundamentalTheorem
From Mctt Require Import Base LibTactics.
From Mctt.Core.Completeness Require Import
ContextCases
FunctionCases
NatCases
SubstitutionCases
TermStructureCases
UniverseCases
VariableCases
SubtypingCases.
From Mctt.Core.Completeness Require Export LogicalRelation.
From Mctt.Core.Syntactic Require Export SystemOpt.
Import Domain_Notations.
Section completeness_fundamental.
Theorem completeness_fundamental :
(forall Γ, {{ ⊢ Γ }} -> {{ ⊨ Γ }}) /\
(forall Γ Γ', {{ ⊢ Γ ⊆ Γ' }} -> {{ SubE Γ <: Γ' }}) /\
(forall Γ A M, {{ Γ ⊢ M : A }} -> {{ Γ ⊨ M : A }}) /\
(forall Γ A M M', {{ Γ ⊢ M ≈ M' : A }} -> {{ Γ ⊨ M ≈ M' : A }}) /\
(forall Γ Δ σ, {{ Γ ⊢s σ : Δ }} -> {{ Γ ⊨s σ : Δ }}) /\
(forall Γ Δ σ σ', {{ Γ ⊢s σ ≈ σ' : Δ }} -> {{ Γ ⊨s σ ≈ σ' : Δ }}) /\
(forall Γ A A', {{ Γ ⊢ A ⊆ A' }} -> {{ Γ ⊨ A ⊆ A' }}).
Proof.
apply syntactic_wf_mut_ind;
mauto 3.
intros.
apply valid_exp_var;
mauto.
Qed.
#[local]
Ltac solve_it := pose proof completeness_fundamental; firstorder.
Theorem completeness_fundamental_ctx : forall Γ, {{ ⊢ Γ }} -> {{ ⊨ Γ }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_ctx_subtyp : forall Γ Γ', {{ ⊢ Γ ⊆ Γ' }} -> {{ SubE Γ <: Γ' }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_exp : forall Γ M A, {{ Γ ⊢ M : A }} -> {{ Γ ⊨ M : A }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_exp_eq : forall Γ A M M', {{ Γ ⊢ M ≈ M' : A }} -> {{ Γ ⊨ M ≈ M' : A }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_sub : forall Γ σ Δ, {{ Γ ⊢s σ : Δ }} -> {{ Γ ⊨s σ : Δ }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_sub_eq : forall Γ Δ σ σ', {{ Γ ⊢s σ ≈ σ' : Δ }} -> {{ Γ ⊨s σ ≈ σ' : Δ }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_subtyp : forall Γ A A', {{ Γ ⊢ A ⊆ A' }} -> {{ Γ ⊨ A ⊆ A' }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_ctx_eq : forall Γ Γ', {{ ⊢ Γ ≈ Γ' }} -> {{ ⊨ Γ ≈ Γ' }}.
Proof.
induction 1.
- apply valid_ctx_empty.
- assert {{ Γ ⊨ A ≈ A' : Type@i }} by mauto using completeness_fundamental_exp_eq.
mauto.
Qed.
End completeness_fundamental.
From Mctt.Core.Completeness Require Import
ContextCases
FunctionCases
NatCases
SubstitutionCases
TermStructureCases
UniverseCases
VariableCases
SubtypingCases.
From Mctt.Core.Completeness Require Export LogicalRelation.
From Mctt.Core.Syntactic Require Export SystemOpt.
Import Domain_Notations.
Section completeness_fundamental.
Theorem completeness_fundamental :
(forall Γ, {{ ⊢ Γ }} -> {{ ⊨ Γ }}) /\
(forall Γ Γ', {{ ⊢ Γ ⊆ Γ' }} -> {{ SubE Γ <: Γ' }}) /\
(forall Γ A M, {{ Γ ⊢ M : A }} -> {{ Γ ⊨ M : A }}) /\
(forall Γ A M M', {{ Γ ⊢ M ≈ M' : A }} -> {{ Γ ⊨ M ≈ M' : A }}) /\
(forall Γ Δ σ, {{ Γ ⊢s σ : Δ }} -> {{ Γ ⊨s σ : Δ }}) /\
(forall Γ Δ σ σ', {{ Γ ⊢s σ ≈ σ' : Δ }} -> {{ Γ ⊨s σ ≈ σ' : Δ }}) /\
(forall Γ A A', {{ Γ ⊢ A ⊆ A' }} -> {{ Γ ⊨ A ⊆ A' }}).
Proof.
apply syntactic_wf_mut_ind;
mauto 3.
intros.
apply valid_exp_var;
mauto.
Qed.
#[local]
Ltac solve_it := pose proof completeness_fundamental; firstorder.
Theorem completeness_fundamental_ctx : forall Γ, {{ ⊢ Γ }} -> {{ ⊨ Γ }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_ctx_subtyp : forall Γ Γ', {{ ⊢ Γ ⊆ Γ' }} -> {{ SubE Γ <: Γ' }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_exp : forall Γ M A, {{ Γ ⊢ M : A }} -> {{ Γ ⊨ M : A }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_exp_eq : forall Γ A M M', {{ Γ ⊢ M ≈ M' : A }} -> {{ Γ ⊨ M ≈ M' : A }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_sub : forall Γ σ Δ, {{ Γ ⊢s σ : Δ }} -> {{ Γ ⊨s σ : Δ }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_sub_eq : forall Γ Δ σ σ', {{ Γ ⊢s σ ≈ σ' : Δ }} -> {{ Γ ⊨s σ ≈ σ' : Δ }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_subtyp : forall Γ A A', {{ Γ ⊢ A ⊆ A' }} -> {{ Γ ⊨ A ⊆ A' }}.
Proof. solve_it. Qed.
Theorem completeness_fundamental_ctx_eq : forall Γ Γ', {{ ⊢ Γ ≈ Γ' }} -> {{ ⊨ Γ ≈ Γ' }}.
Proof.
induction 1.
- apply valid_ctx_empty.
- assert {{ Γ ⊨ A ≈ A' : Type@i }} by mauto using completeness_fundamental_exp_eq.
mauto.
Qed.
End completeness_fundamental.