Mcltt.Extraction.TypeCheck
From Coq Require Import Morphisms_Relations.
From Equations Require Import Equations.
From Mcltt Require Import LibTactics.
From Mcltt.Algorithmic Require Import Typing.
From Mcltt.Core Require Import Base.
From Mcltt.Core.Semantic Require Import Consequences Realizability.
From Mcltt.Extraction Require Import NbE PseudoMonadic Subtyping.
From Mcltt.Frontend Require Import Elaborator.
Import Domain_Notations.
Section lookup.
#[local]
Ltac impl_obl_tac1 :=
match goal with
| |- ~ _ => intro
| H: {{ ⊢ ^_, ^_ }} |- _ => inversion_clear H
| H: {{ # _ : ^_ ∈ ⋅ }} |- _ => inversion_clear H
| H: {{ # (S _) : ^_ ∈ ^_, ^_ }} |- _ => inversion_clear H
end.
#[local]
Ltac impl_obl_tac :=
intros;
repeat impl_obl_tac1;
intuition (mauto 4).
#[tactic="impl_obl_tac",derive(equations=no,eliminator=no)]
Equations lookup G (HG : {{ ⊢ G }}) x : { A | {{ #x : A ∈ G }} } + { forall A, ~ {{ #x : A ∈ G }} } :=
| {{{ G, A }}}, HG, x with x => {
| 0 => pureo (exist _ {{{ A[Wk] }}} _)
| S x' =>
let*o (exist _ B _) := lookup G _ x' while _ in
pureo (exist _ {{{ B[Wk] }}} _)
}
| {{{ ⋅ }}}, HG, x => inright _.
End lookup.
Section type_check.
#[derive(equations=no,eliminator=no)]
Equations get_level_of_type_nf (A : nf) : { i | A = n{{{ Type@i }}} } + { forall i, A <> n{{{ Type@i }}} } :=
| n{{{ Type@i }}} => pureo (exist _ i _)
| _ => inright _
.
From Equations Require Import Equations.
From Mcltt Require Import LibTactics.
From Mcltt.Algorithmic Require Import Typing.
From Mcltt.Core Require Import Base.
From Mcltt.Core.Semantic Require Import Consequences Realizability.
From Mcltt.Extraction Require Import NbE PseudoMonadic Subtyping.
From Mcltt.Frontend Require Import Elaborator.
Import Domain_Notations.
Section lookup.
#[local]
Ltac impl_obl_tac1 :=
match goal with
| |- ~ _ => intro
| H: {{ ⊢ ^_, ^_ }} |- _ => inversion_clear H
| H: {{ # _ : ^_ ∈ ⋅ }} |- _ => inversion_clear H
| H: {{ # (S _) : ^_ ∈ ^_, ^_ }} |- _ => inversion_clear H
end.
#[local]
Ltac impl_obl_tac :=
intros;
repeat impl_obl_tac1;
intuition (mauto 4).
#[tactic="impl_obl_tac",derive(equations=no,eliminator=no)]
Equations lookup G (HG : {{ ⊢ G }}) x : { A | {{ #x : A ∈ G }} } + { forall A, ~ {{ #x : A ∈ G }} } :=
| {{{ G, A }}}, HG, x with x => {
| 0 => pureo (exist _ {{{ A[Wk] }}} _)
| S x' =>
let*o (exist _ B _) := lookup G _ x' while _ in
pureo (exist _ {{{ B[Wk] }}} _)
}
| {{{ ⋅ }}}, HG, x => inright _.
End lookup.
Section type_check.
#[derive(equations=no,eliminator=no)]
Equations get_level_of_type_nf (A : nf) : { i | A = n{{{ Type@i }}} } + { forall i, A <> n{{{ Type@i }}} } :=
| n{{{ Type@i }}} => pureo (exist _ i _)
| _ => inright _
.
Don't forget to use 9th bit of Extraction Flag (for example, Set Extraction Flag 1007.).
Otherwise, this function would introduce redundant pair construction/pattern matching.
#[derive(equations=no,eliminator=no)]
Equations get_subterms_of_pi_nf (A : nf) : { B & { C | A = n{{{ Π B C }}} } } + { forall B C, A <> n{{{ Π B C }}} } :=
| n{{{ Π B C }}} => pureo (existT _ B (exist _ C _))
| _ => inright _
.
Extraction Inline get_level_of_type_nf get_subterms_of_pi_nf.
Inductive type_check_order : exp -> Prop :=
| tc_ti : forall {A}, type_infer_order A -> type_check_order A
with type_infer_order : exp -> Prop :=
| ti_typ : forall {i}, type_infer_order {{{ Type@i }}}
| ti_nat : type_infer_order {{{ ℕ }}}
| ti_zero : type_infer_order {{{ zero }}}
| ti_succ : forall {M}, type_check_order M -> type_infer_order {{{ succ M }}}
| ti_natrec : forall {A MZ MS M}, type_check_order M -> type_infer_order A -> type_check_order MZ -> type_check_order MS -> type_infer_order {{{ rec M return A | zero -> MZ | succ -> MS end }}}
| ti_pi : forall {A B}, type_infer_order {{{ A }}} -> type_infer_order {{{ B }}} -> type_infer_order {{{ Π A B }}}
| ti_fn : forall {A M}, type_infer_order A -> type_infer_order M -> type_infer_order {{{ λ A M }}}
| ti_app : forall {M N}, type_infer_order M -> type_check_order N -> type_infer_order {{{ M N }}}
| ti_vlookup : forall {x}, type_infer_order {{{ #x }}}
.
#[local]
Hint Constructors type_check_order type_infer_order : mcltt.
Lemma user_exp_to_type_infer_order : forall M,
user_exp M ->
type_infer_order M.
Proof.
intros M HM.
enough (type_check_order M) as [] by eassumption.
induction HM; progressive_inversion; mauto 3.
Qed.
#[local]
Ltac clear_defs :=
repeat lazymatch goal with
| H: (forall (G : ctx) (A : typ),
(exists i : nat, {{ G ⊢ A : Type@i }}) ->
forall M : typ,
type_check_order M ->
({ {{ G ⊢a M ⟸ A }} } + { ~ {{ G ⊢a M ⟸ A }} }))
|- _ =>
clear H
| H: (let H := fixproto in
forall (G : ctx) (A : typ),
(exists i : nat, {{ G ⊢ A : Type @ i }}) -> forall M : typ, type_check_order M -> { {{ G ⊢a M ⟸ A }} } + { ~ {{ G ⊢a M ⟸ A }} })
|- _ =>
clear H
| H: (let H := fixproto in
forall G : ctx,
{{ ⊢ G }} ->
forall M : typ,
type_infer_order M ->
({ B : nf | {{ G ⊢a M ⟹ B }} /\ (exists i : nat, {{ G ⊢a ^(nf_to_exp B) ⟹ Type@i }}) } + { forall C : nf, ~ {{ G ⊢a M ⟹ C }} }))
|- _ =>
clear H
| H: (forall G : ctx,
{{ ⊢ G }} ->
forall M : typ,
type_infer_order M ->
({ B : nf | {{ G ⊢a M ⟹ B }} /\ (exists i : nat, {{ G ⊢a ^(nf_to_exp B) ⟹ Type@i }}) } + { forall C : nf, ~ {{ G ⊢a M ⟹ C }} }))
|- _ =>
clear H
end.
#[local]
Ltac impl_obl_tac_helper :=
match goal with
| H: type_infer_order _ |- _ => progressive_invert H
end.
#[local]
Ltac impl_obl_tac :=
clear_defs;
try match goal with
| H: type_check_order _ |- _ => progressive_invert H
end;
repeat match goal with
| H: type_infer_order _ |- _ => progressive_invert H
end;
destruct_conjs;
match goal with
| |- {{ ⊢ ^_ }} => gen_presups; mautosolve 4
| H: {{ ^?G ⊢ ^?A : Type@?i }} |- {{ ^?G ⊢ ^?A : Type@(Nat.max ?i ?j) }} => apply lift_exp_max_left; mautosolve 4
| H: {{ ^?G ⊢ ^?A : Type@?j }} |- {{ ^?G ⊢ ^?A : Type@(Nat.max ?i ?j) }} => apply lift_exp_max_right; mautosolve 4
| |- {{ ^_ ⊢ ^_ : ^_ }} => gen_presups; mautosolve 4
| |- _ -> ~ {{ ^_ ⊢a ^_ ⟸ ^_ }} =>
let H := fresh "H" in
intros ? H;
directed dependent destruction H;
functional_alg_type_infer_rewrite_clear;
firstorder
| |- _ -> (forall A : nf, ~ {{ ^_ ⊢a ^_ ⟹ ^_ }}) =>
unfold not in *;
intros;
progressive_inversion;
functional_alg_type_infer_rewrite_clear;
solve [congruence | mautosolve 3]
| |- type_infer_order _ => eassumption; fail 1
| |- type_check_order _ => eassumption; fail 1
| |- subtyping_order ?G ?A ?B =>
enough (exists i, {{ G ⊢ A : ^n{{{ Type@i }}} }}) as [? [? []]%soundness_ty];
only 1: enough (exists j, {{ G ⊢ B : ^n{{{ Type@j }}} }}) as [? [? []]%soundness_ty];
only 1: solve [econstructor; eauto 3 using nbe_ty_order_sound];
solve [mauto 4 using alg_type_infer_sound]
| _ => try mautosolve 3
end.
#[tactic="impl_obl_tac",derive(equations=no,eliminator=no)]
Equations type_check G A (HA : (exists i, {{ G ⊢ A : Type@i }})) M (H : type_check_order M) : { {{ G ⊢a M ⟸ A }} } + { ~ {{ G ⊢a M ⟸ A }} } by struct H :=
| G, A, HA, M, H =>
let*o->b (exist _ B _) := type_infer G _ M _ while _ in
let*b _ := subtyping_impl G (B : nf) A _ while _ in
pureb _
with type_infer G (HG : {{ ⊢ G }}) M (H : type_infer_order M) : { A : nf | {{ G ⊢a M ⟹ A }} /\ (exists i, {{ G ⊢a A ⟹ Type@i }}) } + { forall A, ~ {{ G ⊢a M ⟹ A }} } by struct H :=
| G, HG, M, H with M => {
| {{{ Type@j }}} =>
pureo (exist _ n{{{ Type@(S j) }}} _)
| {{{ ℕ }}} =>
pureo (exist _ n{{{ Type@0 }}} _)
| {{{ zero }}} =>
pureo (exist _ n{{{ ℕ }}} _)
| {{{ succ M' }}} =>
let*b->o _ := type_check G {{{ ℕ }}} _ M' _ while _ in
pureo (exist _ n{{{ ℕ }}} _)
| {{{ rec M' return A' | zero -> MZ | succ -> MS end }}} =>
let*b->o _ := type_check G {{{ ℕ }}} _ M' _ while _ in
let*o (exist _ UA' _) := type_infer {{{ G, ℕ }}} _ A' _ while _ in
let*o (exist _ i _) := get_level_of_type_nf UA' while _ in
let*b->o _ := type_check G {{{ A'[Id,,zero] }}} _ MZ _ while _ in
let*b->o _ := type_check {{{ G, ℕ, A' }}} {{{ A'[Wk∘Wk,,succ #1] }}} _ MS _ while _ in
let (A'', _) := nbe_ty_impl G {{{ A'[Id,,M'] }}} _ in
pureo (exist _ A'' _)
| {{{ Π B C }}} =>
let*o (exist _ UB _) := type_infer G _ B _ while _ in
let*o (exist _ i _) := get_level_of_type_nf UB while _ in
let*o (exist _ UC _) := type_infer {{{ G, B }}} _ C _ while _ in
let*o (exist _ j _) := get_level_of_type_nf UC while _ in
pureo (exist _ n{{{ Type@(max i j) }}} _)
| {{{ λ A' M' }}} =>
let*o (exist _ UA' _) := type_infer G _ A' _ while _ in
let*o (exist _ i _) := get_level_of_type_nf UA' while _ in
let*o (exist _ B' _) := type_infer {{{ G, A' }}} _ M' _ while _ in
let (A'', _) := nbe_ty_impl G A' _ in
pureo (exist _ n{{{ Π A'' B' }}} _)
| {{{ M' N' }}} =>
let*o (exist _ C _) := type_infer G _ M' _ while _ in
let*o (existT _ A (exist _ B _)) := get_subterms_of_pi_nf C while _ in
let*b->o _ := type_check G (A : nf) _ N' _ while _ in
let (B', _) := nbe_ty_impl G {{{ ^(B : nf)[Id,,N'] }}} _ in
pureo (exist _ B' _)
| {{{ #x }}} =>
let*o (exist _ A _) := lookup G _ x while _ in
let (A', _) := nbe_ty_impl G A _ in
pureo (exist _ A' _)
| _ => inright _
}
.
Next Obligation. (* {{ G ⊢a succ M' ⟹ ℕ }} /\ (exists i, {{ G ⊢a ℕ ⟹ Type@i }}) *)
clear_defs.
mautosolve 4.
Qed.
Next Obligation. (* exists j, {{ G ⊢ A'Id,,zero : Type@j }} *)
clear_defs.
functional_alg_type_infer_rewrite_clear.
eexists.
assert {{ G, ℕ ⊢ A' : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
mauto 3.
Qed.
Next Obligation. (* exists j, {{ G, ℕ, A' ⊢ A'Wk∘Wk,,succ #1 : Type@i }} *)
clear_defs.
functional_alg_type_infer_rewrite_clear.
eexists.
assert {{ G, ℕ ⊢ A' : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
mauto 3.
Qed.
Next Obligation. (* nbe_ty_order G {{{ A'Id,,M' }}} *)
clear_defs.
enough (exists i, {{ G ⊢ A'[Id,,M'] : ^n{{{ Type@i }}} }}) as [? [? []]%exp_eq_refl%completeness_ty]
by eauto 3 using nbe_ty_order_sound.
eexists.
assert {{ G, ℕ ⊢ A' : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G ⊢ ℕ : Type@0 }} by mauto 3.
mauto 4 using alg_type_check_sound.
Qed.
Next Obligation. (* {{ G ⊢a rec M' return A' | zero -> MZ | succ -> MS end ⟹ A'' }} /\ (exists j, {{ G ⊢a A'' ⟹ Type@j }}) *)
clear_defs.
split; [mauto 3 |].
assert {{ G, ℕ ⊢ A' : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G ⊢ ℕ : Type@0 }} by mauto 3.
assert {{ G ⊢ A'[Id,,M'] ≈ A'' : Type@i }} by (eapply soundness_ty'; mauto 4 using alg_type_check_sound).
assert (user_exp A'') by trivial using user_exp_nf.
assert (exists j, {{ G ⊢a A'' ⟹ Type@j }} /\ j <= i) as [? []] by (gen_presups; mauto 3); firstorder.
Qed.
Next Obligation. (* {{ ⊢ G, B }} *)
clear_defs.
assert {{ G ⊢ B : Type@i }} by mauto 4 using alg_type_infer_sound.
mauto 3.
Qed.
Next Obligation. (* {{ G ⊢a Π B C ⟹ Type@(max i j) }} /\ (exists k, {{ G ⊢a Type@(max i j) ⟹ Type@k }}) *)
clear_defs.
mautosolve 4.
Qed.
Next Obligation. (* {{ ⊢ G, A' }} *)
clear_defs.
assert {{ G ⊢ A' : Type@i }} by mauto 4 using alg_type_infer_sound.
mauto 3.
Qed.
Next Obligation. (* nbe_ty_order G A' *)
clear_defs.
assert {{ G ⊢ A' : Type@i }} as [? []]%soundness_ty by mauto 4 using alg_type_infer_sound.
mauto 3 using nbe_ty_order_sound.
Qed.
Next Obligation. (* {{ G ⊢a λ A' M' ⟹ Π A'' B' }} /\ (exists j, {{ G ⊢a Π A'' B' ⟹ Type@j }}) *)
clear_defs.
assert {{ G ⊢ A' : Type@i }} by mauto 4 using alg_type_infer_sound.
assert {{ G ⊢ A' ≈ A'' : Type@i }} by (eapply soundness_ty'; mauto 4 using alg_type_check_sound).
assert {{ ⊢ G, A' }} by mauto 2.
assert {{ G ⊢ A'' : Type@i }} by (gen_presups; mauto 2).
assert {{ ⊢ G, ^(A'' : exp) }} by mauto 2.
assert {{ G, A' ⊢ B' : Type@H1 }} by mauto 4 using alg_type_infer_sound.
assert {{ G, ^(A'' : exp) ⊢ B' : Type@H1 }} by mauto 4.
assert (user_exp A'') by trivial using user_exp_nf.
assert (exists j, {{ G ⊢a A'' ⟹ Type@j }} /\ j <= i) as [? []] by (gen_presups; mauto 3).
assert (user_exp B') by trivial using user_exp_nf.
assert (exists k, {{ G, ^(A'' : exp) ⊢a B' ⟹ Type@k }} /\ k <= H1) as [? []] by (gen_presups; mauto 3).
firstorder mauto 3.
Qed.
Next Obligation. (* exists i : nat, {{ G ⊢ A : Type@i }} *)
clear_defs.
functional_alg_type_infer_rewrite_clear.
progressive_inversion.
eexists; mauto 4 using alg_type_infer_sound.
Qed.
Next Obligation. (* nbe_ty_order G {{{ sId,,N' }}} *)
clear_defs.
functional_alg_type_infer_rewrite_clear.
progressive_inversion.
assert {{ G ⊢ A : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G, ^(A : exp) ⊢ s : ^n{{{ Type@j }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G ⊢ N' : A }} by mauto 3 using alg_type_check_sound.
assert {{ G ⊢ s[Id,,N'] : ^n{{{ Type@j }}} }} as [? []]%soundness_ty by mauto 3.
mauto 3 using nbe_ty_order_sound.
Qed.
Next Obligation. (* {{ G ⊢a M' N' ⟹ B' }} /\ (exists i, {{ G ⊢a B' ⟹ Type@i }}) *)
clear_defs.
functional_alg_type_infer_rewrite_clear.
progressive_inversion.
split; [mauto 3 |].
assert {{ G ⊢ A : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G, ^(A : exp) ⊢ s : ^n{{{ Type@j }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G ⊢ s[Id,,N'] ≈ B' : Type@j }} by (eapply soundness_ty'; mauto 4 using alg_type_check_sound).
assert (user_exp B') by trivial using user_exp_nf.
assert (exists k, {{ G ⊢a B' ⟹ Type@k }} /\ k <= j) as [? []] by (gen_presups; mauto 3).
firstorder.
Qed.
Next Obligation. (* nbe_ty_order G A *)
clear_defs.
assert (exists i, {{ G ⊢ A : Type@i }}) as [? [? []]%soundness_ty] by mauto 3.
mauto 3 using nbe_ty_order_sound.
Qed.
Next Obligation. (* {{ G ⊢a x ⟹ A' }} /\ (exists i, {{ G ⊢a A' ⟹ Type@i }}) *)
clear_defs.
assert (exists i, {{ G ⊢ A : Type@i }}) as [i] by mauto 3.
assert {{ G ⊢ A ≈ A' : Type@i }} by (eapply soundness_ty'; mauto 4 using alg_type_check_sound).
assert (user_exp A') by trivial using user_exp_nf.
assert (exists j, {{ G ⊢a A' ⟹ Type@j }} /\ j <= i) as [? []] by (gen_presups; mauto 4); firstorder mauto 3.
Qed.
Extraction Inline type_check_functional type_infer_functional.
Lemma type_infer_order_soundness : forall G M A,
{{ G ⊢a M ⟹ A }} ->
type_infer_order M
with type_check_order_soundness : forall G M A,
{{ G ⊢a M ⟸ A }} ->
type_check_order M.
Proof.
- clear type_infer_order_soundness.
induction 1; mauto 3.
econstructor; mauto 3.
- clear type_check_order_soundness.
induction 1; mauto 3.
Qed.
End type_check.
#[local]
Hint Resolve type_check_order_soundness type_infer_order_soundness : mcltt.
Lemma type_check_complete' : forall G M A (HA : exists i, {{ G ⊢ A : Type@i }}),
{{ G ⊢a M ⟸ A }} ->
exists H H', type_check G A HA M H = left H'.
Proof.
intros ? ? ? [] ?.
assert (Horder : type_check_order M) by mauto.
exists Horder.
dec_complete.
Qed.
Lemma type_infer_complete : forall G M A (HG : {{ ⊢ G }}),
{{ G ⊢a M ⟹ A }} ->
exists H H', type_infer G HG M H = inleft (exist _ A H').
Proof.
intros.
assert (Horder : type_infer_order M) by mauto.
exists Horder.
destruct (type_infer G HG M Horder) as [[? []] |].
- functional_alg_type_infer_rewrite_clear.
eexists; reflexivity.
- contradict H; intuition.
Qed.
Section type_check_closed.
#[local]
Ltac impl_obl_tac :=
unfold not in *;
intros;
mauto 3 using user_exp_to_type_infer_order, type_check_order, type_infer_order.
#[tactic="impl_obl_tac",derive(equations=no,eliminator=no)]
Equations type_check_closed A (HA : user_exp A) M (HM : user_exp M) : { {{ ⋅ ⊢ M : A }} } + { ~ {{ ⋅ ⊢ M : A }} } :=
| A, HA, M, HM =>
let*o->b (exist _ UA _) := type_infer {{{ ⋅ }}} _ A _ while _ in
let*o->b (exist _ i _) := get_level_of_type_nf UA while _ in
let*b _ := type_check {{{ ⋅ }}} A _ M _ while _ in
pureb _
.
Next Obligation. (* False *)
assert {{ ⊢ ⋅ }} by mauto 2.
assert (exists i, {{ ⋅ ⊢ A : Type@i }}) as [i] by (gen_presups; eauto 2).
assert (exists j, {{ ⋅ ⊢a A ⟹ Type@j }} /\ j <= i) as [j []] by mauto 3.
firstorder.
Qed.
Next Obligation. (* False *)
assert (exists i, {{ ⋅ ⊢ A : Type@i }}) as [i] by (gen_presups; eauto 2).
assert (exists j, {{ ⋅ ⊢a A ⟹ Type@j }} /\ j <= i) as [j []] by mauto 3.
functional_alg_type_infer_rewrite_clear.
intuition.
Qed.
Next Obligation. (* exists i, {{ ⋅ ⊢ A : Type@i }} *)
assert {{ ⊢ ⋅ }} by mauto 2.
assert {{ ⋅ ⊢ A : ^n{{{ Type@i }}} }} by mauto 2 using alg_type_infer_sound.
simpl in *.
firstorder.
Qed.
Next Obligation. (* {{ ⋅ ⊢ M : A }} *)
assert {{ ⊢ ⋅ }} by mauto 2.
assert {{ ⋅ ⊢ A : ^n{{{ Type@i }}} }} by mauto 3 using alg_type_infer_sound.
simpl in *.
mauto 3 using alg_type_check_sound.
Qed.
End type_check_closed.
Lemma type_check_closed_complete : forall A (HA : user_exp A) M (HM : user_exp M),
{{ ⋅ ⊢ M : A }} ->
exists H', type_check_closed A HA M HM = left H'.
Proof. intros; dec_complete. Qed.
Equations get_subterms_of_pi_nf (A : nf) : { B & { C | A = n{{{ Π B C }}} } } + { forall B C, A <> n{{{ Π B C }}} } :=
| n{{{ Π B C }}} => pureo (existT _ B (exist _ C _))
| _ => inright _
.
Extraction Inline get_level_of_type_nf get_subterms_of_pi_nf.
Inductive type_check_order : exp -> Prop :=
| tc_ti : forall {A}, type_infer_order A -> type_check_order A
with type_infer_order : exp -> Prop :=
| ti_typ : forall {i}, type_infer_order {{{ Type@i }}}
| ti_nat : type_infer_order {{{ ℕ }}}
| ti_zero : type_infer_order {{{ zero }}}
| ti_succ : forall {M}, type_check_order M -> type_infer_order {{{ succ M }}}
| ti_natrec : forall {A MZ MS M}, type_check_order M -> type_infer_order A -> type_check_order MZ -> type_check_order MS -> type_infer_order {{{ rec M return A | zero -> MZ | succ -> MS end }}}
| ti_pi : forall {A B}, type_infer_order {{{ A }}} -> type_infer_order {{{ B }}} -> type_infer_order {{{ Π A B }}}
| ti_fn : forall {A M}, type_infer_order A -> type_infer_order M -> type_infer_order {{{ λ A M }}}
| ti_app : forall {M N}, type_infer_order M -> type_check_order N -> type_infer_order {{{ M N }}}
| ti_vlookup : forall {x}, type_infer_order {{{ #x }}}
.
#[local]
Hint Constructors type_check_order type_infer_order : mcltt.
Lemma user_exp_to_type_infer_order : forall M,
user_exp M ->
type_infer_order M.
Proof.
intros M HM.
enough (type_check_order M) as [] by eassumption.
induction HM; progressive_inversion; mauto 3.
Qed.
#[local]
Ltac clear_defs :=
repeat lazymatch goal with
| H: (forall (G : ctx) (A : typ),
(exists i : nat, {{ G ⊢ A : Type@i }}) ->
forall M : typ,
type_check_order M ->
({ {{ G ⊢a M ⟸ A }} } + { ~ {{ G ⊢a M ⟸ A }} }))
|- _ =>
clear H
| H: (let H := fixproto in
forall (G : ctx) (A : typ),
(exists i : nat, {{ G ⊢ A : Type @ i }}) -> forall M : typ, type_check_order M -> { {{ G ⊢a M ⟸ A }} } + { ~ {{ G ⊢a M ⟸ A }} })
|- _ =>
clear H
| H: (let H := fixproto in
forall G : ctx,
{{ ⊢ G }} ->
forall M : typ,
type_infer_order M ->
({ B : nf | {{ G ⊢a M ⟹ B }} /\ (exists i : nat, {{ G ⊢a ^(nf_to_exp B) ⟹ Type@i }}) } + { forall C : nf, ~ {{ G ⊢a M ⟹ C }} }))
|- _ =>
clear H
| H: (forall G : ctx,
{{ ⊢ G }} ->
forall M : typ,
type_infer_order M ->
({ B : nf | {{ G ⊢a M ⟹ B }} /\ (exists i : nat, {{ G ⊢a ^(nf_to_exp B) ⟹ Type@i }}) } + { forall C : nf, ~ {{ G ⊢a M ⟹ C }} }))
|- _ =>
clear H
end.
#[local]
Ltac impl_obl_tac_helper :=
match goal with
| H: type_infer_order _ |- _ => progressive_invert H
end.
#[local]
Ltac impl_obl_tac :=
clear_defs;
try match goal with
| H: type_check_order _ |- _ => progressive_invert H
end;
repeat match goal with
| H: type_infer_order _ |- _ => progressive_invert H
end;
destruct_conjs;
match goal with
| |- {{ ⊢ ^_ }} => gen_presups; mautosolve 4
| H: {{ ^?G ⊢ ^?A : Type@?i }} |- {{ ^?G ⊢ ^?A : Type@(Nat.max ?i ?j) }} => apply lift_exp_max_left; mautosolve 4
| H: {{ ^?G ⊢ ^?A : Type@?j }} |- {{ ^?G ⊢ ^?A : Type@(Nat.max ?i ?j) }} => apply lift_exp_max_right; mautosolve 4
| |- {{ ^_ ⊢ ^_ : ^_ }} => gen_presups; mautosolve 4
| |- _ -> ~ {{ ^_ ⊢a ^_ ⟸ ^_ }} =>
let H := fresh "H" in
intros ? H;
directed dependent destruction H;
functional_alg_type_infer_rewrite_clear;
firstorder
| |- _ -> (forall A : nf, ~ {{ ^_ ⊢a ^_ ⟹ ^_ }}) =>
unfold not in *;
intros;
progressive_inversion;
functional_alg_type_infer_rewrite_clear;
solve [congruence | mautosolve 3]
| |- type_infer_order _ => eassumption; fail 1
| |- type_check_order _ => eassumption; fail 1
| |- subtyping_order ?G ?A ?B =>
enough (exists i, {{ G ⊢ A : ^n{{{ Type@i }}} }}) as [? [? []]%soundness_ty];
only 1: enough (exists j, {{ G ⊢ B : ^n{{{ Type@j }}} }}) as [? [? []]%soundness_ty];
only 1: solve [econstructor; eauto 3 using nbe_ty_order_sound];
solve [mauto 4 using alg_type_infer_sound]
| _ => try mautosolve 3
end.
#[tactic="impl_obl_tac",derive(equations=no,eliminator=no)]
Equations type_check G A (HA : (exists i, {{ G ⊢ A : Type@i }})) M (H : type_check_order M) : { {{ G ⊢a M ⟸ A }} } + { ~ {{ G ⊢a M ⟸ A }} } by struct H :=
| G, A, HA, M, H =>
let*o->b (exist _ B _) := type_infer G _ M _ while _ in
let*b _ := subtyping_impl G (B : nf) A _ while _ in
pureb _
with type_infer G (HG : {{ ⊢ G }}) M (H : type_infer_order M) : { A : nf | {{ G ⊢a M ⟹ A }} /\ (exists i, {{ G ⊢a A ⟹ Type@i }}) } + { forall A, ~ {{ G ⊢a M ⟹ A }} } by struct H :=
| G, HG, M, H with M => {
| {{{ Type@j }}} =>
pureo (exist _ n{{{ Type@(S j) }}} _)
| {{{ ℕ }}} =>
pureo (exist _ n{{{ Type@0 }}} _)
| {{{ zero }}} =>
pureo (exist _ n{{{ ℕ }}} _)
| {{{ succ M' }}} =>
let*b->o _ := type_check G {{{ ℕ }}} _ M' _ while _ in
pureo (exist _ n{{{ ℕ }}} _)
| {{{ rec M' return A' | zero -> MZ | succ -> MS end }}} =>
let*b->o _ := type_check G {{{ ℕ }}} _ M' _ while _ in
let*o (exist _ UA' _) := type_infer {{{ G, ℕ }}} _ A' _ while _ in
let*o (exist _ i _) := get_level_of_type_nf UA' while _ in
let*b->o _ := type_check G {{{ A'[Id,,zero] }}} _ MZ _ while _ in
let*b->o _ := type_check {{{ G, ℕ, A' }}} {{{ A'[Wk∘Wk,,succ #1] }}} _ MS _ while _ in
let (A'', _) := nbe_ty_impl G {{{ A'[Id,,M'] }}} _ in
pureo (exist _ A'' _)
| {{{ Π B C }}} =>
let*o (exist _ UB _) := type_infer G _ B _ while _ in
let*o (exist _ i _) := get_level_of_type_nf UB while _ in
let*o (exist _ UC _) := type_infer {{{ G, B }}} _ C _ while _ in
let*o (exist _ j _) := get_level_of_type_nf UC while _ in
pureo (exist _ n{{{ Type@(max i j) }}} _)
| {{{ λ A' M' }}} =>
let*o (exist _ UA' _) := type_infer G _ A' _ while _ in
let*o (exist _ i _) := get_level_of_type_nf UA' while _ in
let*o (exist _ B' _) := type_infer {{{ G, A' }}} _ M' _ while _ in
let (A'', _) := nbe_ty_impl G A' _ in
pureo (exist _ n{{{ Π A'' B' }}} _)
| {{{ M' N' }}} =>
let*o (exist _ C _) := type_infer G _ M' _ while _ in
let*o (existT _ A (exist _ B _)) := get_subterms_of_pi_nf C while _ in
let*b->o _ := type_check G (A : nf) _ N' _ while _ in
let (B', _) := nbe_ty_impl G {{{ ^(B : nf)[Id,,N'] }}} _ in
pureo (exist _ B' _)
| {{{ #x }}} =>
let*o (exist _ A _) := lookup G _ x while _ in
let (A', _) := nbe_ty_impl G A _ in
pureo (exist _ A' _)
| _ => inright _
}
.
Next Obligation. (* {{ G ⊢a succ M' ⟹ ℕ }} /\ (exists i, {{ G ⊢a ℕ ⟹ Type@i }}) *)
clear_defs.
mautosolve 4.
Qed.
Next Obligation. (* exists j, {{ G ⊢ A'Id,,zero : Type@j }} *)
clear_defs.
functional_alg_type_infer_rewrite_clear.
eexists.
assert {{ G, ℕ ⊢ A' : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
mauto 3.
Qed.
Next Obligation. (* exists j, {{ G, ℕ, A' ⊢ A'Wk∘Wk,,succ #1 : Type@i }} *)
clear_defs.
functional_alg_type_infer_rewrite_clear.
eexists.
assert {{ G, ℕ ⊢ A' : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
mauto 3.
Qed.
Next Obligation. (* nbe_ty_order G {{{ A'Id,,M' }}} *)
clear_defs.
enough (exists i, {{ G ⊢ A'[Id,,M'] : ^n{{{ Type@i }}} }}) as [? [? []]%exp_eq_refl%completeness_ty]
by eauto 3 using nbe_ty_order_sound.
eexists.
assert {{ G, ℕ ⊢ A' : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G ⊢ ℕ : Type@0 }} by mauto 3.
mauto 4 using alg_type_check_sound.
Qed.
Next Obligation. (* {{ G ⊢a rec M' return A' | zero -> MZ | succ -> MS end ⟹ A'' }} /\ (exists j, {{ G ⊢a A'' ⟹ Type@j }}) *)
clear_defs.
split; [mauto 3 |].
assert {{ G, ℕ ⊢ A' : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G ⊢ ℕ : Type@0 }} by mauto 3.
assert {{ G ⊢ A'[Id,,M'] ≈ A'' : Type@i }} by (eapply soundness_ty'; mauto 4 using alg_type_check_sound).
assert (user_exp A'') by trivial using user_exp_nf.
assert (exists j, {{ G ⊢a A'' ⟹ Type@j }} /\ j <= i) as [? []] by (gen_presups; mauto 3); firstorder.
Qed.
Next Obligation. (* {{ ⊢ G, B }} *)
clear_defs.
assert {{ G ⊢ B : Type@i }} by mauto 4 using alg_type_infer_sound.
mauto 3.
Qed.
Next Obligation. (* {{ G ⊢a Π B C ⟹ Type@(max i j) }} /\ (exists k, {{ G ⊢a Type@(max i j) ⟹ Type@k }}) *)
clear_defs.
mautosolve 4.
Qed.
Next Obligation. (* {{ ⊢ G, A' }} *)
clear_defs.
assert {{ G ⊢ A' : Type@i }} by mauto 4 using alg_type_infer_sound.
mauto 3.
Qed.
Next Obligation. (* nbe_ty_order G A' *)
clear_defs.
assert {{ G ⊢ A' : Type@i }} as [? []]%soundness_ty by mauto 4 using alg_type_infer_sound.
mauto 3 using nbe_ty_order_sound.
Qed.
Next Obligation. (* {{ G ⊢a λ A' M' ⟹ Π A'' B' }} /\ (exists j, {{ G ⊢a Π A'' B' ⟹ Type@j }}) *)
clear_defs.
assert {{ G ⊢ A' : Type@i }} by mauto 4 using alg_type_infer_sound.
assert {{ G ⊢ A' ≈ A'' : Type@i }} by (eapply soundness_ty'; mauto 4 using alg_type_check_sound).
assert {{ ⊢ G, A' }} by mauto 2.
assert {{ G ⊢ A'' : Type@i }} by (gen_presups; mauto 2).
assert {{ ⊢ G, ^(A'' : exp) }} by mauto 2.
assert {{ G, A' ⊢ B' : Type@H1 }} by mauto 4 using alg_type_infer_sound.
assert {{ G, ^(A'' : exp) ⊢ B' : Type@H1 }} by mauto 4.
assert (user_exp A'') by trivial using user_exp_nf.
assert (exists j, {{ G ⊢a A'' ⟹ Type@j }} /\ j <= i) as [? []] by (gen_presups; mauto 3).
assert (user_exp B') by trivial using user_exp_nf.
assert (exists k, {{ G, ^(A'' : exp) ⊢a B' ⟹ Type@k }} /\ k <= H1) as [? []] by (gen_presups; mauto 3).
firstorder mauto 3.
Qed.
Next Obligation. (* exists i : nat, {{ G ⊢ A : Type@i }} *)
clear_defs.
functional_alg_type_infer_rewrite_clear.
progressive_inversion.
eexists; mauto 4 using alg_type_infer_sound.
Qed.
Next Obligation. (* nbe_ty_order G {{{ sId,,N' }}} *)
clear_defs.
functional_alg_type_infer_rewrite_clear.
progressive_inversion.
assert {{ G ⊢ A : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G, ^(A : exp) ⊢ s : ^n{{{ Type@j }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G ⊢ N' : A }} by mauto 3 using alg_type_check_sound.
assert {{ G ⊢ s[Id,,N'] : ^n{{{ Type@j }}} }} as [? []]%soundness_ty by mauto 3.
mauto 3 using nbe_ty_order_sound.
Qed.
Next Obligation. (* {{ G ⊢a M' N' ⟹ B' }} /\ (exists i, {{ G ⊢a B' ⟹ Type@i }}) *)
clear_defs.
functional_alg_type_infer_rewrite_clear.
progressive_inversion.
split; [mauto 3 |].
assert {{ G ⊢ A : ^n{{{ Type@i }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G, ^(A : exp) ⊢ s : ^n{{{ Type@j }}} }} by mauto 4 using alg_type_infer_sound.
assert {{ G ⊢ s[Id,,N'] ≈ B' : Type@j }} by (eapply soundness_ty'; mauto 4 using alg_type_check_sound).
assert (user_exp B') by trivial using user_exp_nf.
assert (exists k, {{ G ⊢a B' ⟹ Type@k }} /\ k <= j) as [? []] by (gen_presups; mauto 3).
firstorder.
Qed.
Next Obligation. (* nbe_ty_order G A *)
clear_defs.
assert (exists i, {{ G ⊢ A : Type@i }}) as [? [? []]%soundness_ty] by mauto 3.
mauto 3 using nbe_ty_order_sound.
Qed.
Next Obligation. (* {{ G ⊢a x ⟹ A' }} /\ (exists i, {{ G ⊢a A' ⟹ Type@i }}) *)
clear_defs.
assert (exists i, {{ G ⊢ A : Type@i }}) as [i] by mauto 3.
assert {{ G ⊢ A ≈ A' : Type@i }} by (eapply soundness_ty'; mauto 4 using alg_type_check_sound).
assert (user_exp A') by trivial using user_exp_nf.
assert (exists j, {{ G ⊢a A' ⟹ Type@j }} /\ j <= i) as [? []] by (gen_presups; mauto 4); firstorder mauto 3.
Qed.
Extraction Inline type_check_functional type_infer_functional.
Lemma type_infer_order_soundness : forall G M A,
{{ G ⊢a M ⟹ A }} ->
type_infer_order M
with type_check_order_soundness : forall G M A,
{{ G ⊢a M ⟸ A }} ->
type_check_order M.
Proof.
- clear type_infer_order_soundness.
induction 1; mauto 3.
econstructor; mauto 3.
- clear type_check_order_soundness.
induction 1; mauto 3.
Qed.
End type_check.
#[local]
Hint Resolve type_check_order_soundness type_infer_order_soundness : mcltt.
Lemma type_check_complete' : forall G M A (HA : exists i, {{ G ⊢ A : Type@i }}),
{{ G ⊢a M ⟸ A }} ->
exists H H', type_check G A HA M H = left H'.
Proof.
intros ? ? ? [] ?.
assert (Horder : type_check_order M) by mauto.
exists Horder.
dec_complete.
Qed.
Lemma type_infer_complete : forall G M A (HG : {{ ⊢ G }}),
{{ G ⊢a M ⟹ A }} ->
exists H H', type_infer G HG M H = inleft (exist _ A H').
Proof.
intros.
assert (Horder : type_infer_order M) by mauto.
exists Horder.
destruct (type_infer G HG M Horder) as [[? []] |].
- functional_alg_type_infer_rewrite_clear.
eexists; reflexivity.
- contradict H; intuition.
Qed.
Section type_check_closed.
#[local]
Ltac impl_obl_tac :=
unfold not in *;
intros;
mauto 3 using user_exp_to_type_infer_order, type_check_order, type_infer_order.
#[tactic="impl_obl_tac",derive(equations=no,eliminator=no)]
Equations type_check_closed A (HA : user_exp A) M (HM : user_exp M) : { {{ ⋅ ⊢ M : A }} } + { ~ {{ ⋅ ⊢ M : A }} } :=
| A, HA, M, HM =>
let*o->b (exist _ UA _) := type_infer {{{ ⋅ }}} _ A _ while _ in
let*o->b (exist _ i _) := get_level_of_type_nf UA while _ in
let*b _ := type_check {{{ ⋅ }}} A _ M _ while _ in
pureb _
.
Next Obligation. (* False *)
assert {{ ⊢ ⋅ }} by mauto 2.
assert (exists i, {{ ⋅ ⊢ A : Type@i }}) as [i] by (gen_presups; eauto 2).
assert (exists j, {{ ⋅ ⊢a A ⟹ Type@j }} /\ j <= i) as [j []] by mauto 3.
firstorder.
Qed.
Next Obligation. (* False *)
assert (exists i, {{ ⋅ ⊢ A : Type@i }}) as [i] by (gen_presups; eauto 2).
assert (exists j, {{ ⋅ ⊢a A ⟹ Type@j }} /\ j <= i) as [j []] by mauto 3.
functional_alg_type_infer_rewrite_clear.
intuition.
Qed.
Next Obligation. (* exists i, {{ ⋅ ⊢ A : Type@i }} *)
assert {{ ⊢ ⋅ }} by mauto 2.
assert {{ ⋅ ⊢ A : ^n{{{ Type@i }}} }} by mauto 2 using alg_type_infer_sound.
simpl in *.
firstorder.
Qed.
Next Obligation. (* {{ ⋅ ⊢ M : A }} *)
assert {{ ⊢ ⋅ }} by mauto 2.
assert {{ ⋅ ⊢ A : ^n{{{ Type@i }}} }} by mauto 3 using alg_type_infer_sound.
simpl in *.
mauto 3 using alg_type_check_sound.
Qed.
End type_check_closed.
Lemma type_check_closed_complete : forall A (HA : user_exp A) M (HM : user_exp M),
{{ ⋅ ⊢ M : A }} ->
exists H', type_check_closed A HA M HM = left H'.
Proof. intros; dec_complete. Qed.