Mctt.Core.Completeness.Consequences.Rules
From Coq Require Import RelationClasses.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core Require Export Completeness.
From Mctt.Core.Semantic Require Import Realizability.
Import Domain_Notations.
Lemma ctxeq_nbe_eq : forall Γ Γ' M A,
{{ Γ ⊢ M : A }} ->
{{ ⊢ Γ ≈ Γ' }} ->
exists W, nbe Γ M A W /\ nbe Γ' M A W.
Proof.
intros * [envR [Henv [i]]]%completeness_fundamental_exp [envR' Henv']%completeness_fundamental_ctx_eq.
handle_per_ctx_env_irrel.
destruct (per_ctx_then_per_env_initial_env Henv') as [p [p' [? []]]].
deepexec H ltac:(fun H => destruct H as [R [? ?]]).
progressive_inversion.
deepexec @per_elem_then_per_top ltac:(fun H => destruct H as [W []]).
exists W.
split; econstructor; eauto.
erewrite per_ctx_respects_length; try eassumption.
eexists. symmetry.
eassumption.
Qed.
Corollary ctxeq_nbe_eq' : forall Γ Γ' M A W,
{{ Γ ⊢ M : A }} ->
{{ ⊢ Γ ≈ Γ' }} ->
nbe Γ M A W ->
nbe Γ' M A W.
Proof.
intros.
assert (exists W, nbe Γ M A W /\ nbe Γ' M A W) as [? []] by mauto 3 using ctxeq_nbe_eq.
functional_nbe_rewrite_clear.
eassumption.
Qed.
Corollary ctxeq_nbe_ty_eq : forall Γ Γ' A i,
{{ Γ ⊢ A : Type@i }} ->
{{ ⊢ Γ ≈ Γ' }} ->
exists W, nbe_ty Γ A W /\ nbe_ty Γ' A W.
Proof.
intros.
assert (exists W, nbe Γ A {{{ Type@i }}} W /\ nbe Γ' A {{{ Type@i }}} W) as [? [?%nbe_type_to_nbe_ty ?%nbe_type_to_nbe_ty]] by mauto 3 using ctxeq_nbe_eq.
firstorder.
Qed.
Corollary ctxeq_nbe_ty_eq' : forall Γ Γ' A i W,
{{ Γ ⊢ A : Type@i }} ->
{{ ⊢ Γ ≈ Γ' }} ->
nbe_ty Γ A W ->
nbe_ty Γ' A W.
Proof.
intros.
assert (exists W, nbe_ty Γ A W /\ nbe_ty Γ' A W) as [? []] by mauto 3 using ctxeq_nbe_ty_eq.
functional_nbe_rewrite_clear.
eassumption.
Qed.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core Require Export Completeness.
From Mctt.Core.Semantic Require Import Realizability.
Import Domain_Notations.
Lemma ctxeq_nbe_eq : forall Γ Γ' M A,
{{ Γ ⊢ M : A }} ->
{{ ⊢ Γ ≈ Γ' }} ->
exists W, nbe Γ M A W /\ nbe Γ' M A W.
Proof.
intros * [envR [Henv [i]]]%completeness_fundamental_exp [envR' Henv']%completeness_fundamental_ctx_eq.
handle_per_ctx_env_irrel.
destruct (per_ctx_then_per_env_initial_env Henv') as [p [p' [? []]]].
deepexec H ltac:(fun H => destruct H as [R [? ?]]).
progressive_inversion.
deepexec @per_elem_then_per_top ltac:(fun H => destruct H as [W []]).
exists W.
split; econstructor; eauto.
erewrite per_ctx_respects_length; try eassumption.
eexists. symmetry.
eassumption.
Qed.
Corollary ctxeq_nbe_eq' : forall Γ Γ' M A W,
{{ Γ ⊢ M : A }} ->
{{ ⊢ Γ ≈ Γ' }} ->
nbe Γ M A W ->
nbe Γ' M A W.
Proof.
intros.
assert (exists W, nbe Γ M A W /\ nbe Γ' M A W) as [? []] by mauto 3 using ctxeq_nbe_eq.
functional_nbe_rewrite_clear.
eassumption.
Qed.
Corollary ctxeq_nbe_ty_eq : forall Γ Γ' A i,
{{ Γ ⊢ A : Type@i }} ->
{{ ⊢ Γ ≈ Γ' }} ->
exists W, nbe_ty Γ A W /\ nbe_ty Γ' A W.
Proof.
intros.
assert (exists W, nbe Γ A {{{ Type@i }}} W /\ nbe Γ' A {{{ Type@i }}} W) as [? [?%nbe_type_to_nbe_ty ?%nbe_type_to_nbe_ty]] by mauto 3 using ctxeq_nbe_eq.
firstorder.
Qed.
Corollary ctxeq_nbe_ty_eq' : forall Γ Γ' A i W,
{{ Γ ⊢ A : Type@i }} ->
{{ ⊢ Γ ≈ Γ' }} ->
nbe_ty Γ A W ->
nbe_ty Γ' A W.
Proof.
intros.
assert (exists W, nbe_ty Γ A W /\ nbe_ty Γ' A W) as [? []] by mauto 3 using ctxeq_nbe_ty_eq.
functional_nbe_rewrite_clear.
eassumption.
Qed.