Mctt.Core.Completeness.SubtypingCases
From Coq Require Import Morphisms_Relations RelationClasses.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness Require Import LogicalRelation FunctionCases.
Import Domain_Notations.
Lemma subtyp_refl : forall Γ M M' i,
{{ Γ ⊨ M ≈ M' : Type@i }} ->
{{ Γ ⊨ M ⊆ M' }}.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_subtyp.
intros.
saturate_refl.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
destruct_conjs.
handle_per_univ_elem_irrel.
do 2 eexists.
repeat split; econstructor; mauto 3;
etransitivity; try eassumption; symmetry; eassumption.
Qed.
Lemma subtyp_trans : forall Γ M M' M'',
{{ Γ ⊨ M ⊆ M' }} ->
{{ Γ ⊨ M' ⊆ M'' }} ->
{{ Γ ⊨ M ⊆ M'' }}.
Proof.
intros * [env_relΓ [? [i]]] [? [? [j]]].
destruct_conjs.
pose env_relΓ.
handle_per_ctx_env_irrel.
eexists_subtyp_with (max i j).
intros.
saturate_refl.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
destruct_by_head rel_exp.
destruct_conjs.
handle_per_univ_elem_irrel.
do 2 eexists.
repeat split; econstructor;
eauto using per_univ_elem_cumu_max_left, per_univ_elem_cumu_max_right.
etransitivity;
eauto using per_subtyp_cumu_left, per_subtyp_cumu_right.
Qed.
#[export]
Instance subtyp_Transitive Γ : Transitive (subtyp_under_ctx Γ).
Proof. eauto using subtyp_trans. Qed.
Lemma subtyp_univ : forall Γ i j,
{{ ⊨ Γ }} ->
i < j ->
{{ Γ ⊨ Type@i ⊆ Type@j }}.
Proof.
intros * [env_relΓ] ?.
eexists_subtyp.
intros.
assert (i < S (max i j)) by lia.
assert (j < S (max i j)) by lia.
do 2 eexists.
repeat split; econstructor;
try apply per_univ_elem_core_univ'; try reflexivity;
mauto 3.
econstructor; lia.
Qed.
Lemma subtyp_pi : forall Γ A A' B B' i,
{{ Γ ⊨ A ≈ A' : Type@i }} ->
{{ Γ , A' ⊨ B ⊆ B' }} ->
{{ Γ ⊨ Π A B ⊆ Π A' B' }}.
Proof.
intros * [env_relΓ] [? [? [k]]].
destruct_conjs.
invert_per_ctx_envs.
match goal with
| _: _ <~> cons_per_ctx_env env_relΓ ?x |- _ =>
rename x into head_relA'
end.
handle_per_ctx_env_irrel.
eexists_subtyp.
intros.
saturate_refl.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
destruct_conjs.
handle_per_univ_elem_irrel.
match goal with
| _: env_relΓ ρ ?ρ0 |- _ =>
assert_fails (unify ρ ρ0);
rename ρ0 into ρ'
end.
assert (forall c c', head_relA' ρ ρ' equiv_ρ_ρ' c c' -> cons_per_ctx_env env_relΓ head_relA' d{{{ ρ ↦ c }}} d{{{ ρ' ↦ c' }}}) as HΓA'
by (intros; unshelve econstructor; eassumption).
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness Require Import LogicalRelation FunctionCases.
Import Domain_Notations.
Lemma subtyp_refl : forall Γ M M' i,
{{ Γ ⊨ M ≈ M' : Type@i }} ->
{{ Γ ⊨ M ⊆ M' }}.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_subtyp.
intros.
saturate_refl.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
destruct_conjs.
handle_per_univ_elem_irrel.
do 2 eexists.
repeat split; econstructor; mauto 3;
etransitivity; try eassumption; symmetry; eassumption.
Qed.
Lemma subtyp_trans : forall Γ M M' M'',
{{ Γ ⊨ M ⊆ M' }} ->
{{ Γ ⊨ M' ⊆ M'' }} ->
{{ Γ ⊨ M ⊆ M'' }}.
Proof.
intros * [env_relΓ [? [i]]] [? [? [j]]].
destruct_conjs.
pose env_relΓ.
handle_per_ctx_env_irrel.
eexists_subtyp_with (max i j).
intros.
saturate_refl.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
destruct_by_head rel_exp.
destruct_conjs.
handle_per_univ_elem_irrel.
do 2 eexists.
repeat split; econstructor;
eauto using per_univ_elem_cumu_max_left, per_univ_elem_cumu_max_right.
etransitivity;
eauto using per_subtyp_cumu_left, per_subtyp_cumu_right.
Qed.
#[export]
Instance subtyp_Transitive Γ : Transitive (subtyp_under_ctx Γ).
Proof. eauto using subtyp_trans. Qed.
Lemma subtyp_univ : forall Γ i j,
{{ ⊨ Γ }} ->
i < j ->
{{ Γ ⊨ Type@i ⊆ Type@j }}.
Proof.
intros * [env_relΓ] ?.
eexists_subtyp.
intros.
assert (i < S (max i j)) by lia.
assert (j < S (max i j)) by lia.
do 2 eexists.
repeat split; econstructor;
try apply per_univ_elem_core_univ'; try reflexivity;
mauto 3.
econstructor; lia.
Qed.
Lemma subtyp_pi : forall Γ A A' B B' i,
{{ Γ ⊨ A ≈ A' : Type@i }} ->
{{ Γ , A' ⊨ B ⊆ B' }} ->
{{ Γ ⊨ Π A B ⊆ Π A' B' }}.
Proof.
intros * [env_relΓ] [? [? [k]]].
destruct_conjs.
invert_per_ctx_envs.
match goal with
| _: _ <~> cons_per_ctx_env env_relΓ ?x |- _ =>
rename x into head_relA'
end.
handle_per_ctx_env_irrel.
eexists_subtyp.
intros.
saturate_refl.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
destruct_conjs.
handle_per_univ_elem_irrel.
match goal with
| _: env_relΓ ρ ?ρ0 |- _ =>
assert_fails (unify ρ ρ0);
rename ρ0 into ρ'
end.
assert (forall c c', head_relA' ρ ρ' equiv_ρ_ρ' c c' -> cons_per_ctx_env env_relΓ head_relA' d{{{ ρ ↦ c }}} d{{{ ρ' ↦ c' }}}) as HΓA'
by (intros; unshelve econstructor; eassumption).
The proofs for the next two assertions are basically the same
exvar (relation domain)
ltac:(fun R => assert ({{ DF Π m0 ρ B ≈ Π m1 ρ' B ∈ per_univ_elem (Nat.max i k) ↘ R }})).
{
intros.
per_univ_elem_econstructor; [| | solve_refl].
- etransitivity; [| symmetry]; mauto using per_univ_elem_cumu_max_left.
- eapply rel_exp_pi_core; [| reflexivity].
intros.
assert {{ Dom ρ ↦ c ≈ ρ' ↦ c' ∈ cons_per_ctx_env env_relΓ head_relA' }} as equiv_ρc_ρ'c' by (apply HΓA'; intuition).
(on_all_hyp: fun H => destruct (H _ _ equiv_ρc_ρ'c')).
destruct_conjs.
destruct_by_head rel_typ.
econstructor; mauto using per_univ_elem_cumu_max_right.
}
exvar (relation domain)
ltac:(fun R => assert ({{ DF Π a0 ρ B' ≈ Π a ρ' B' ∈ per_univ_elem (Nat.max i k) ↘ R }})).
{
intros.
per_univ_elem_econstructor; [| | solve_refl].
- etransitivity; [symmetry |]; mauto using per_univ_elem_cumu_max_left.
- eapply rel_exp_pi_core; [| reflexivity].
intros.
assert {{ Dom ρ ↦ c ≈ ρ' ↦ c' ∈ cons_per_ctx_env env_relΓ head_relA' }} as equiv_ρc_ρ'c' by (apply HΓA'; intuition).
simpl in *.
(on_all_hyp: fun H => destruct (H _ _ equiv_ρc_ρ'c')).
destruct_conjs.
destruct_by_head rel_mod_eval.
econstructor; mauto using per_univ_elem_cumu_max_right.
}
do 2 eexists.
repeat split; econstructor; mauto 2.
econstructor; only 3-4: try (saturate_refl; mautosolve 2).
- eauto using per_univ_elem_cumu_max_left.
- intros.
assert (cons_per_ctx_env env_relΓ head_relA' d{{{ ρ ↦ c }}} d{{{ ρ' ↦ c' }}}) as equiv_ρc_ρ'c' by (apply HΓA'; intuition).
simpl in *.
(on_all_hyp: fun H => destruct (H _ _ equiv_ρc_ρ'c')).
destruct_conjs.
destruct_by_head rel_exp.
simplify_evals.
mauto 2 using per_subtyp_cumu_right.
Qed.
#[export]
Hint Resolve subtyp_refl subtyp_trans subtyp_univ subtyp_pi : mctt.
ltac:(fun R => assert ({{ DF Π m0 ρ B ≈ Π m1 ρ' B ∈ per_univ_elem (Nat.max i k) ↘ R }})).
{
intros.
per_univ_elem_econstructor; [| | solve_refl].
- etransitivity; [| symmetry]; mauto using per_univ_elem_cumu_max_left.
- eapply rel_exp_pi_core; [| reflexivity].
intros.
assert {{ Dom ρ ↦ c ≈ ρ' ↦ c' ∈ cons_per_ctx_env env_relΓ head_relA' }} as equiv_ρc_ρ'c' by (apply HΓA'; intuition).
(on_all_hyp: fun H => destruct (H _ _ equiv_ρc_ρ'c')).
destruct_conjs.
destruct_by_head rel_typ.
econstructor; mauto using per_univ_elem_cumu_max_right.
}
exvar (relation domain)
ltac:(fun R => assert ({{ DF Π a0 ρ B' ≈ Π a ρ' B' ∈ per_univ_elem (Nat.max i k) ↘ R }})).
{
intros.
per_univ_elem_econstructor; [| | solve_refl].
- etransitivity; [symmetry |]; mauto using per_univ_elem_cumu_max_left.
- eapply rel_exp_pi_core; [| reflexivity].
intros.
assert {{ Dom ρ ↦ c ≈ ρ' ↦ c' ∈ cons_per_ctx_env env_relΓ head_relA' }} as equiv_ρc_ρ'c' by (apply HΓA'; intuition).
simpl in *.
(on_all_hyp: fun H => destruct (H _ _ equiv_ρc_ρ'c')).
destruct_conjs.
destruct_by_head rel_mod_eval.
econstructor; mauto using per_univ_elem_cumu_max_right.
}
do 2 eexists.
repeat split; econstructor; mauto 2.
econstructor; only 3-4: try (saturate_refl; mautosolve 2).
- eauto using per_univ_elem_cumu_max_left.
- intros.
assert (cons_per_ctx_env env_relΓ head_relA' d{{{ ρ ↦ c }}} d{{{ ρ' ↦ c' }}}) as equiv_ρc_ρ'c' by (apply HΓA'; intuition).
simpl in *.
(on_all_hyp: fun H => destruct (H _ _ equiv_ρc_ρ'c')).
destruct_conjs.
destruct_by_head rel_exp.
simplify_evals.
mauto 2 using per_subtyp_cumu_right.
Qed.
#[export]
Hint Resolve subtyp_refl subtyp_trans subtyp_univ subtyp_pi : mctt.