Mctt.Core.Semantic.Readback.Definitions

From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Import Evaluation.
From Mctt.Core.Semantic Require Export Domain.
Import Domain_Notations.

Reserved Notation "'Rnf' m 'in' s ↘ M" (in custom judg at level 80, m custom domain, s constr, M custom nf).
Reserved Notation "'Rne' m 'in' s ↘ M" (in custom judg at level 80, m custom domain, s constr, M custom nf).
Reserved Notation "'Rtyp' m 'in' s ↘ M" (in custom judg at level 80, m custom domain, s constr, M custom nf).

Generalizable All Variables.

Inductive read_nf : nat -> domain_nf -> nf -> Prop :=
| read_nf_type :
  `( {{ Rtyp a in s A }} ->
     {{ Rnf 𝕌@i a in s A }} )
| read_nf_zero :
  `( {{ Rnf zero in s zero }} )
| read_nf_succ :
  `( {{ Rnf m in s M }} ->
     {{ Rnf (succ m) in s succ M }} )
| read_nf_nat_neut :
  `( {{ Rne m in s M }} ->
     {{ Rnf ( a m) in s M }} )
| read_nf_fn :
  `(
Normal form of arg type
     {{ Rtyp a in s A }} ->
     
Normal form of eta-expanded body
     {{ $| m & ⇑! a s |↘ m' }} ->
     {{ B ρ ⇑! a s b }} ->
     {{ Rnf b m' in S s M }} ->

     {{ Rnf (Π a ρ B) m in s λ A M }} )
| read_nf_refl :
  `( {{ Rtyp a in s A }} ->
     {{ Rnf a m' in s M' }} ->
     {{ Rnf (Eq a m1 m2) (refl m') in s refl A M' }} )
| read_nf_eq_neut :
  `( {{ Rne n in s N }} ->
     {{ Rnf (Eq a m1 m2) ( b n) in s N }} )
| read_nf_neut :
  `( {{ Rne m in s M }} ->
     {{ Rnf ( a b) ( c m) in s M }} )
where "'Rnf' m 'in' s ↘ M" := (read_nf s m M) (in custom judg) : type_scope
with read_ne : nat -> domain_ne -> ne -> Prop :=
| read_ne_var :
  `( {{ Rne !x in s #(s - x - 1) }} )
| read_ne_natrec :
  `(
Normal form of motive
     {{ B ρ ⇑! s b }} ->
     {{ Rtyp b in S s B' }} ->

     
Normal form of mz
     {{ B ρ zero bz }} ->
     {{ Rnf bz mz in s MZ }} ->

     
Normal form of MS
     {{ B ρ succ (⇑! s) bs }} ->
     {{ MS ρ ⇑! s ⇑! b (S s) ms }} ->
     {{ Rnf bs ms in S (S s) MS' }} ->

     
Neutral form of m
     {{ Rne m in s M }} ->

     {{ Rne rec m under ρ return B | zero -> mz | succ -> MS end in s rec M return B' | zero -> MZ | succ -> MS' end }} )
| read_ne_app :
  `( {{ Rne m in s M }} ->
     {{ Rnf n in s N }} ->
     {{ Rne m n in s M N }} )
| read_ne_eqrec :
  `(
Normal form of type annotation
     {{ Rtyp a in s A }} ->
     {{ Rnf a m1 in s M1 }} ->
     {{ Rnf a m2 in s M2 }} ->

     
Normal form of motive
     {{ B ρ ⇑! a s ⇑! a (S s) ⇑! (Eq a (⇑! a s) (⇑! a (S s))) (S (S s)) b }} ->
     {{ Rtyp b in S (S (S s)) B' }} ->

     
Normal form of BR
     {{ B ρ ⇑! a s ⇑! a s refl (⇑! a s) bbr }} ->
     {{ BR ρ ⇑! a s br }} ->
     {{ Rnf bbr br in S s BR' }} ->

     
Neutral form of m
     {{ Rne n in s N }} ->

     {{ Rne eqrec n under ρ as Eq a m1 m2 return B | refl -> BR end in s eqrec N as Eq A M1 M2 return B' | refl -> BR' end }} )
where "'Rne' m 'in' s ↘ M" := (read_ne s m M) (in custom judg) : type_scope
with read_typ : nat -> domain -> nf -> Prop :=
| read_typ_univ :
  `( {{ Rtyp 𝕌@i in s Type@i }} )
| read_typ_nat :
  `( {{ Rtyp in s }} )
| read_typ_pi :
  `(
Normal form of arg type
     {{ Rtyp a in s A }} ->

     
Normal form of ret type
     {{ B ρ ⇑! a s b }} ->
     {{ Rtyp b in S s B' }} ->

     {{ Rtyp Π a ρ B in s Π A B' }})
| read_typ_eq :
  `(
Normal form of equality type
     {{ Rtyp a in s A }} ->

     
Normal form of LHS
     {{ Rnf a m1 in s M1 }} ->

     
Normal form of RHS
     {{ Rnf a m2 in s M2 }} ->

     {{ Rtyp Eq a m1 m2 in s Eq A M1 M2 }})
| read_typ_neut :
  `( {{ Rne b in s B }} ->
     {{ Rtyp a b in s B }})
where "'Rtyp' m 'in' s ↘ M" := (read_typ s m M) (in custom judg) : type_scope
.

Scheme read_nf_mut_ind := Induction for read_nf Sort Prop
with read_ne_mut_ind := Induction for read_ne Sort Prop
with read_typ_mut_ind := Induction for read_typ Sort Prop.
Combined Scheme read_mut_ind from
  read_nf_mut_ind,
  read_ne_mut_ind,
  read_typ_mut_ind.

#[export]
Hint Constructors read_nf read_ne read_typ : mctt.