Mctt.Core.Soundness.Realizability
From Coq Require Import Nat.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Import Realizability.
From Mctt.Core.Soundness.LogicalRelation Require Export Core.
Import Domain_Notations.
Open Scope list_scope.
Lemma wf_ctx_sub_ctx_lookup : forall n A Γ,
{{ #n : A ∈ Γ }} ->
forall Δ,
{{ ⊢ Δ ⊆ Γ}} ->
exists Δ1 A0 Δ2 A',
Δ = Δ1 ++ A0 :: Δ2 /\
n = length Δ1 /\
A' = iter (S n) (fun A => {{{ A[Wk] }}}) A0 /\
{{ #n : A' ∈ Δ }} /\
{{ Δ ⊢ A' ⊆ A }}.
Proof.
induction 1; intros; progressive_inversion.
- exists nil.
repeat eexists; mauto 4.
- edestruct IHctx_lookup as [Δ1 [? [? [? [? [? [? []]]]]]]]; eauto 3.
exists (A0 :: Δ1). subst.
repeat eexists; mauto 4.
Qed.
Lemma var_arith : forall Γ1 Γ2 (A : typ),
length (Γ1 ++ A :: Γ2) - length Γ2 - 1 = length Γ1.
Proof.
intros.
rewrite List.length_app. simpl.
lia.
Qed.
Lemma var_weaken_gen : forall Δ σ Γ,
{{ Δ ⊢w σ : Γ }} ->
forall Γ1 Γ2 A0,
Γ = Γ1 ++ A0 :: Γ2 ->
{{ Δ ⊢ #(length Γ1)[σ] ≈ #(length Δ - length Γ2 - 1) : ^(iter (S (length Γ1)) (fun A => {{{ A[Wk] }}}) A0)[σ] }}.
Proof.
induction 1; intros; subst; gen_presups.
- pose proof (app_ctx_vlookup _ _ _ _ ltac:(eassumption) eq_refl) as Hvar.
gen_presup Hvar.
clear_dups.
apply wf_sub_id_inversion in Hτ.
pose proof (wf_ctx_sub_length _ _ Hτ).
transitivity {{{ #(length Γ1)[Id] }}}; [mauto 3 |].
replace (length Γ) with (length (Γ1 ++ {{{ Γ2, A0 }}})) by lia.
rewrite var_arith, H.
bulky_rewrite.
- pose proof (app_ctx_vlookup _ _ _ _ HΔ0 eq_refl) as Hvar.
pose proof (app_ctx_lookup Γ1 A0 Γ2 _ eq_refl).
gen_presup Hvar.
clear_dups.
assert {{ ⊢ Δ', A }} by mauto 3.
assert {{ Δ', A ⊢s Wk : ^(Γ1 ++ {{{ Γ2, A0 }}}) }} by mauto 3.
transitivity {{{ #(length Γ1)[Wk∘τ] }}}; [mauto 3 |].
rewrite H1.
etransitivity; [eapply wf_exp_eq_sub_compose; mauto 3 |].
pose proof (wf_ctx_sub_length _ _ H0).
rewrite <- @exp_eq_sub_compose_typ; mauto 2.
deepexec wf_ctx_sub_ctx_lookup ltac:(fun H => destruct H as [Γ1' [? [Γ2' [? [-> [? [-> []]]]]]]]).
repeat rewrite List.length_app in *.
replace (length Γ1) with (length Γ1') in * by lia.
clear_refl_eqs.
replace (length Γ2) with (length Γ2') by (simpl in *; lia).
etransitivity.
+ eapply wf_exp_eq_sub_cong; [ |mauto 3].
eapply wf_exp_eq_subtyp'.
* eapply wf_exp_eq_var_weaken; [mauto 3|]; eauto.
* mauto 4.
+ eapply wf_exp_eq_subtyp'.
* eapply IHweakening with (Γ1 := A :: _).
reflexivity.
* eapply wf_subtyp_subst; [ |mauto 3].
simpl. eapply wf_subtyp_subst; mauto 3.
Qed.
Lemma var_glu_elem_bot : forall a i P El Γ A,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ Γ ⊢ A ® P }} ->
{{ Γ, A ⊢ #0 : A[Wk] ® !(length Γ) ∈ glu_elem_bot i a }}.
Proof.
intros. saturate_glu_info.
econstructor; mauto 4.
- eapply glu_univ_elem_typ_monotone; eauto.
mauto 4.
- intros. progressive_inversion.
exact (var_weaken_gen _ _ _ H2 nil _ _ eq_refl).
Qed.
#[local]
Hint Rewrite -> wf_sub_eq_extend_compose using mauto 4 : mctt.
Theorem realize_glu_univ_elem_gen : forall a i P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
(forall Γ A R,
{{ DF a ≈ a ∈ per_univ_elem i ↘ R }} ->
{{ Γ ⊢ A ® P }} ->
{{ Γ ⊢ A ® glu_typ_top i a }}) /\
(forall Γ M A m,
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Import Realizability.
From Mctt.Core.Soundness.LogicalRelation Require Export Core.
Import Domain_Notations.
Open Scope list_scope.
Lemma wf_ctx_sub_ctx_lookup : forall n A Γ,
{{ #n : A ∈ Γ }} ->
forall Δ,
{{ ⊢ Δ ⊆ Γ}} ->
exists Δ1 A0 Δ2 A',
Δ = Δ1 ++ A0 :: Δ2 /\
n = length Δ1 /\
A' = iter (S n) (fun A => {{{ A[Wk] }}}) A0 /\
{{ #n : A' ∈ Δ }} /\
{{ Δ ⊢ A' ⊆ A }}.
Proof.
induction 1; intros; progressive_inversion.
- exists nil.
repeat eexists; mauto 4.
- edestruct IHctx_lookup as [Δ1 [? [? [? [? [? [? []]]]]]]]; eauto 3.
exists (A0 :: Δ1). subst.
repeat eexists; mauto 4.
Qed.
Lemma var_arith : forall Γ1 Γ2 (A : typ),
length (Γ1 ++ A :: Γ2) - length Γ2 - 1 = length Γ1.
Proof.
intros.
rewrite List.length_app. simpl.
lia.
Qed.
Lemma var_weaken_gen : forall Δ σ Γ,
{{ Δ ⊢w σ : Γ }} ->
forall Γ1 Γ2 A0,
Γ = Γ1 ++ A0 :: Γ2 ->
{{ Δ ⊢ #(length Γ1)[σ] ≈ #(length Δ - length Γ2 - 1) : ^(iter (S (length Γ1)) (fun A => {{{ A[Wk] }}}) A0)[σ] }}.
Proof.
induction 1; intros; subst; gen_presups.
- pose proof (app_ctx_vlookup _ _ _ _ ltac:(eassumption) eq_refl) as Hvar.
gen_presup Hvar.
clear_dups.
apply wf_sub_id_inversion in Hτ.
pose proof (wf_ctx_sub_length _ _ Hτ).
transitivity {{{ #(length Γ1)[Id] }}}; [mauto 3 |].
replace (length Γ) with (length (Γ1 ++ {{{ Γ2, A0 }}})) by lia.
rewrite var_arith, H.
bulky_rewrite.
- pose proof (app_ctx_vlookup _ _ _ _ HΔ0 eq_refl) as Hvar.
pose proof (app_ctx_lookup Γ1 A0 Γ2 _ eq_refl).
gen_presup Hvar.
clear_dups.
assert {{ ⊢ Δ', A }} by mauto 3.
assert {{ Δ', A ⊢s Wk : ^(Γ1 ++ {{{ Γ2, A0 }}}) }} by mauto 3.
transitivity {{{ #(length Γ1)[Wk∘τ] }}}; [mauto 3 |].
rewrite H1.
etransitivity; [eapply wf_exp_eq_sub_compose; mauto 3 |].
pose proof (wf_ctx_sub_length _ _ H0).
rewrite <- @exp_eq_sub_compose_typ; mauto 2.
deepexec wf_ctx_sub_ctx_lookup ltac:(fun H => destruct H as [Γ1' [? [Γ2' [? [-> [? [-> []]]]]]]]).
repeat rewrite List.length_app in *.
replace (length Γ1) with (length Γ1') in * by lia.
clear_refl_eqs.
replace (length Γ2) with (length Γ2') by (simpl in *; lia).
etransitivity.
+ eapply wf_exp_eq_sub_cong; [ |mauto 3].
eapply wf_exp_eq_subtyp'.
* eapply wf_exp_eq_var_weaken; [mauto 3|]; eauto.
* mauto 4.
+ eapply wf_exp_eq_subtyp'.
* eapply IHweakening with (Γ1 := A :: _).
reflexivity.
* eapply wf_subtyp_subst; [ |mauto 3].
simpl. eapply wf_subtyp_subst; mauto 3.
Qed.
Lemma var_glu_elem_bot : forall a i P El Γ A,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ Γ ⊢ A ® P }} ->
{{ Γ, A ⊢ #0 : A[Wk] ® !(length Γ) ∈ glu_elem_bot i a }}.
Proof.
intros. saturate_glu_info.
econstructor; mauto 4.
- eapply glu_univ_elem_typ_monotone; eauto.
mauto 4.
- intros. progressive_inversion.
exact (var_weaken_gen _ _ _ H2 nil _ _ eq_refl).
Qed.
#[local]
Hint Rewrite -> wf_sub_eq_extend_compose using mauto 4 : mctt.
Theorem realize_glu_univ_elem_gen : forall a i P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
(forall Γ A R,
{{ DF a ≈ a ∈ per_univ_elem i ↘ R }} ->
{{ Γ ⊢ A ® P }} ->
{{ Γ ⊢ A ® glu_typ_top i a }}) /\
(forall Γ M A m,
We repeat this to get the relation between a and P
more easily after applying induction 1.
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ Γ ⊢ M : A ® m ∈ glu_elem_bot i a }} ->
{{ Γ ⊢ M : A ® ⇑ a m ∈ El }}) /\
(forall Γ M A m R,
{{ Γ ⊢ M : A ® m ∈ glu_elem_bot i a }} ->
{{ Γ ⊢ M : A ® ⇑ a m ∈ El }}) /\
(forall Γ M A m R,
We repeat this to get the relation between a and P
more easily after applying induction 1.
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ DF a ≈ a ∈ per_univ_elem i ↘ R }} ->
{{ Dom m ≈ m ∈ R }} ->
{{ Γ ⊢ M : A ® m ∈ glu_elem_top i a }}).
Proof.
simpl. induction 1 using glu_univ_elem_ind.
all:split; [| split]; intros;
apply_equiv_left;
gen_presups;
try match_by_head1 per_univ_elem ltac:(fun H => pose proof (per_univ_then_per_top_typ H));
match_by_head glu_elem_bot ltac:(fun H => destruct H as []);
destruct_all.
- econstructor; eauto; intros.
progressive_inversion.
transitivity {{{ Type@j[σ] }}}; mauto 4.
- handle_functional_glu_univ_elem.
match_by_head glu_univ_elem invert_glu_univ_elem.
clear_dups.
apply_equiv_left.
repeat split; eauto.
repeat eexists.
+ glu_univ_elem_econstructor; eauto; reflexivity.
+ simpl. repeat split.
* rewrite <- H5. trivial.
* intros.
saturate_weakening_escape.
rewrite <- wf_exp_eq_typ_sub; try eassumption.
rewrite <- H5.
firstorder.
- deepexec glu_univ_elem_per_univ ltac:(fun H => pose proof H).
firstorder.
specialize (H _ _ _ H10) as [? []].
econstructor; mauto 3.
+ apply_equiv_left. trivial.
+ intros.
saturate_weakening_escape.
deepexec H ltac:(fun H => destruct H).
progressive_invert H16.
deepexec H20 ltac:(fun H => pose proof H).
functional_read_rewrite_clear.
bulky_rewrite.
- econstructor; eauto; intros.
progressive_inversion.
transitivity {{{ ℕ[σ] }}}; mauto 3.
- handle_functional_glu_univ_elem.
match_by_head glu_univ_elem invert_glu_univ_elem.
apply_equiv_left.
repeat split; eauto.
econstructor; trivial.
intros.
saturate_weakening_escape.
assert {{ Δ ⊢ A[σ] ≈ ℕ[σ] : Type @ i }} by mauto 3.
rewrite <- wf_exp_eq_nat_sub; try eassumption.
mauto 3.
- econstructor; mauto 3.
+ bulky_rewrite. mauto 3.
+ apply_equiv_left. trivial.
+ intros.
saturate_weakening_escape.
bulky_rewrite.
mauto using glu_nat_readback.
- match_by_head pi_glu_typ_pred progressive_invert.
handle_per_univ_elem_irrel.
invert_per_univ_elem H6.
econstructor; eauto; intros.
+ gen_presups. trivial.
+ saturate_weakening_escape.
assert {{ Γ ⊢w Id : Γ }} by mauto 4.
assert {{ Δ ⊢ IT[σ] ® IP }} by mauto 3.
assert (IP Γ {{{ IT[Id] }}}) as HITId by mauto 3.
bulky_rewrite_in HITId.
assert {{ Γ ⊢ IT[Id] ≈ IT : Type@i }} by mauto 3.
dir_inversion_clear_by_head read_typ.
assert {{ Γ ⊢ IT ® glu_typ_top i a }} as [] by mauto 3.
bulky_rewrite.
simpl. apply wf_exp_eq_pi_cong'; [firstorder |].
pose proof (var_per_elem (length Δ) H0).
destruct_rel_mod_eval.
simplify_evals.
destruct (H2 _ ltac:(eassumption) _ ltac:(eassumption)) as [? []].
assert (IEl {{{ Δ, IT[σ] }}} {{{ IT[σ][Wk] }}} {{{ #0 }}} d{{{ ⇑! a (length Δ) }}}) by mauto 3 using var_glu_elem_bot.
autorewrite with mctt in H31.
specialize (H14 {{{ Δ, IT[σ] }}} {{{ σ∘Wk }}} _ _ ltac:(mauto) ltac:(eassumption) ltac:(eassumption)).
specialize (H8 _ _ _ ltac:(eassumption) ltac:(eassumption)) as [].
etransitivity; [| eapply H33]; mauto 3.
- handle_functional_glu_univ_elem.
apply_equiv_left.
invert_glu_rel1.
econstructor; try eapply per_bot_then_per_elem; eauto.
intros.
saturate_weakening_escape.
saturate_glu_info.
match_by_head1 per_univ_elem invert_per_univ_elem.
destruct_rel_mod_eval.
simplify_evals.
eexists; repeat split; mauto 3.
eapply H2; eauto.
assert {{ Δ ⊢ M[σ] : A[σ] }} by mauto 3.
bulky_rewrite_in H23.
unshelve (econstructor; eauto).
+ trivial.
+ eassert {{ Δ ⊢ M[σ] N : ^_ }} by (eapply wf_app'; eassumption).
autorewrite with mctt in H25.
trivial.
+ mauto using domain_app_per.
+ intros.
saturate_weakening_escape.
progressive_invert H26.
destruct (H15 _ _ _ _ _ ltac:(eassumption) ltac:(eassumption) ltac:(eassumption) equiv_n).
handle_functional_glu_univ_elem.
autorewrite with mctt.
etransitivity.
* rewrite sub_decompose_q_typ; mauto 4.
* simpl.
rewrite <- @sub_eq_q_sigma_id_extend; mauto 4.
rewrite <- @exp_eq_sub_compose_typ; mauto 3;
[eapply wf_exp_eq_app_cong' |].
-- specialize (H12 _ {{{σ ∘ σ0}}} _ ltac:(mauto 3) ltac:(eassumption)).
rewrite wf_exp_eq_sub_compose with (M := M) in H12; mauto 3.
bulky_rewrite_in H12.
-- rewrite <- @exp_eq_sub_compose_typ; mauto 3.
-- econstructor; mauto 3.
autorewrite with mctt.
rewrite <- @exp_eq_sub_compose_typ; mauto 3.
- handle_functional_glu_univ_elem.
handle_per_univ_elem_irrel.
pose proof H8.
invert_per_univ_elem H8.
econstructor; mauto 3.
+ invert_glu_rel1. trivial.
+ eapply glu_univ_elem_trm_typ; eauto.
+ intros.
saturate_weakening_escape.
invert_glu_rel1. clear_dups.
progressive_invert H20.
assert {{ Γ ⊢w Id : Γ }} by mauto 4.
pose proof (H10 _ _ H24).
specialize (H10 _ _ H19).
assert {{ Γ ⊢ IT[Id] ≈ IT : Type@i }} by mauto 3.
bulky_rewrite_in H25.
destruct (H11 _ _ _ ltac:(eassumption) ltac:(eassumption)) as [].
specialize (H29 _ _ _ H19 H9).
rewrite H5 in *.
autorewrite with mctt.
eassert {{ Δ ⊢ M[σ] : ^_ }} by (mauto 2).
autorewrite with mctt in H30.
rewrite @wf_exp_eq_pi_eta' with (M := {{{ M[σ] }}}); [| trivial].
cbn [nf_to_exp].
eapply wf_exp_eq_fn_cong'; eauto.
pose proof (var_per_elem (length Δ) H0).
destruct_rel_mod_eval.
simplify_evals.
destruct (H2 _ ltac:(eassumption) _ ltac:(eassumption)) as [? []].
specialize (H12 _ _ _ _ ltac:(trivial) (var_glu_elem_bot _ _ _ _ _ _ H H10)).
autorewrite with mctt in H12.
specialize (H14 {{{Δ, IT[σ]}}} {{{σ ∘ Wk}}} _ _ ltac:(mauto) ltac:(eassumption) ltac:(eassumption)) as [? []].
apply_equiv_left.
destruct_rel_mod_app.
simplify_evals.
deepexec H1 ltac:(fun H => pose proof H).
specialize (H33 _ _ _ _ _ ltac:(eassumption) ltac:(eassumption) ltac:(eassumption) ltac:(eassumption)) as [].
specialize (H40 _ {{{Id}}} _ ltac:(mauto 3) ltac:(eassumption)).
do 2 (rewrite wf_exp_eq_sub_id in H40; mauto 3).
etransitivity; [|eassumption].
simpl.
assert {{ Δ, IT[σ] ⊢ #0 : IT[σ∘Wk] }} by (rewrite <- @exp_eq_sub_compose_typ; mauto 3).
rewrite <- @sub_eq_q_sigma_id_extend; mauto 4.
rewrite <- @exp_eq_sub_compose_typ; mauto 2.
2:eapply sub_q; mauto 4.
2:gen_presup H41; econstructor; mauto 3.
eapply wf_exp_eq_app_cong'; [| mauto 3].
symmetry.
rewrite <- wf_exp_eq_pi_sub; mauto 4.
- econstructor; eauto.
intros.
progressive_inversion.
firstorder.
- handle_functional_glu_univ_elem.
apply_equiv_left.
econstructor; eauto.
- handle_functional_glu_univ_elem.
invert_glu_rel1.
econstructor; eauto.
+ intros s. destruct (H3 s) as [? []].
mauto.
+ intros.
progressive_inversion.
specialize (H11 (length Δ)) as [? []].
firstorder.
Qed.
Corollary realize_glu_typ_top : forall a i P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A,
{{ Γ ⊢ A ® P }} ->
{{ Γ ⊢ A ® glu_typ_top i a }}.
Proof.
intros.
pose proof H.
eapply glu_univ_elem_per_univ in H.
simpl in *. destruct_all.
eapply realize_glu_univ_elem_gen; eauto.
Qed.
Theorem realize_glu_elem_bot : forall a i P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A M m,
{{ Γ ⊢ M : A ® m ∈ glu_elem_bot i a }} ->
{{ Γ ⊢ M : A ® ⇑ a m ∈ El }}.
Proof.
intros.
eapply realize_glu_univ_elem_gen; eauto.
Qed.
Theorem realize_glu_elem_top : forall a i P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A M m,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ M : A ® m ∈ glu_elem_top i a }}.
Proof.
intros.
pose proof H.
eapply glu_univ_elem_per_univ in H.
simpl in *. destruct_all.
eapply realize_glu_univ_elem_gen; eauto.
eapply glu_univ_elem_per_elem; eauto.
Qed.
#[export]
Hint Resolve realize_glu_typ_top realize_glu_elem_top : mctt.
Corollary var0_glu_elem : forall {i a P El Γ A},
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ Γ ⊢ A ® P }} ->
{{ Γ, A ⊢ #0 : A[Wk] ® ⇑! a (length Γ) ∈ El }}.
Proof.
intros.
eapply realize_glu_elem_bot; mauto 4.
eauto using var_glu_elem_bot.
Qed.
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ DF a ≈ a ∈ per_univ_elem i ↘ R }} ->
{{ Dom m ≈ m ∈ R }} ->
{{ Γ ⊢ M : A ® m ∈ glu_elem_top i a }}).
Proof.
simpl. induction 1 using glu_univ_elem_ind.
all:split; [| split]; intros;
apply_equiv_left;
gen_presups;
try match_by_head1 per_univ_elem ltac:(fun H => pose proof (per_univ_then_per_top_typ H));
match_by_head glu_elem_bot ltac:(fun H => destruct H as []);
destruct_all.
- econstructor; eauto; intros.
progressive_inversion.
transitivity {{{ Type@j[σ] }}}; mauto 4.
- handle_functional_glu_univ_elem.
match_by_head glu_univ_elem invert_glu_univ_elem.
clear_dups.
apply_equiv_left.
repeat split; eauto.
repeat eexists.
+ glu_univ_elem_econstructor; eauto; reflexivity.
+ simpl. repeat split.
* rewrite <- H5. trivial.
* intros.
saturate_weakening_escape.
rewrite <- wf_exp_eq_typ_sub; try eassumption.
rewrite <- H5.
firstorder.
- deepexec glu_univ_elem_per_univ ltac:(fun H => pose proof H).
firstorder.
specialize (H _ _ _ H10) as [? []].
econstructor; mauto 3.
+ apply_equiv_left. trivial.
+ intros.
saturate_weakening_escape.
deepexec H ltac:(fun H => destruct H).
progressive_invert H16.
deepexec H20 ltac:(fun H => pose proof H).
functional_read_rewrite_clear.
bulky_rewrite.
- econstructor; eauto; intros.
progressive_inversion.
transitivity {{{ ℕ[σ] }}}; mauto 3.
- handle_functional_glu_univ_elem.
match_by_head glu_univ_elem invert_glu_univ_elem.
apply_equiv_left.
repeat split; eauto.
econstructor; trivial.
intros.
saturate_weakening_escape.
assert {{ Δ ⊢ A[σ] ≈ ℕ[σ] : Type @ i }} by mauto 3.
rewrite <- wf_exp_eq_nat_sub; try eassumption.
mauto 3.
- econstructor; mauto 3.
+ bulky_rewrite. mauto 3.
+ apply_equiv_left. trivial.
+ intros.
saturate_weakening_escape.
bulky_rewrite.
mauto using glu_nat_readback.
- match_by_head pi_glu_typ_pred progressive_invert.
handle_per_univ_elem_irrel.
invert_per_univ_elem H6.
econstructor; eauto; intros.
+ gen_presups. trivial.
+ saturate_weakening_escape.
assert {{ Γ ⊢w Id : Γ }} by mauto 4.
assert {{ Δ ⊢ IT[σ] ® IP }} by mauto 3.
assert (IP Γ {{{ IT[Id] }}}) as HITId by mauto 3.
bulky_rewrite_in HITId.
assert {{ Γ ⊢ IT[Id] ≈ IT : Type@i }} by mauto 3.
dir_inversion_clear_by_head read_typ.
assert {{ Γ ⊢ IT ® glu_typ_top i a }} as [] by mauto 3.
bulky_rewrite.
simpl. apply wf_exp_eq_pi_cong'; [firstorder |].
pose proof (var_per_elem (length Δ) H0).
destruct_rel_mod_eval.
simplify_evals.
destruct (H2 _ ltac:(eassumption) _ ltac:(eassumption)) as [? []].
assert (IEl {{{ Δ, IT[σ] }}} {{{ IT[σ][Wk] }}} {{{ #0 }}} d{{{ ⇑! a (length Δ) }}}) by mauto 3 using var_glu_elem_bot.
autorewrite with mctt in H31.
specialize (H14 {{{ Δ, IT[σ] }}} {{{ σ∘Wk }}} _ _ ltac:(mauto) ltac:(eassumption) ltac:(eassumption)).
specialize (H8 _ _ _ ltac:(eassumption) ltac:(eassumption)) as [].
etransitivity; [| eapply H33]; mauto 3.
- handle_functional_glu_univ_elem.
apply_equiv_left.
invert_glu_rel1.
econstructor; try eapply per_bot_then_per_elem; eauto.
intros.
saturate_weakening_escape.
saturate_glu_info.
match_by_head1 per_univ_elem invert_per_univ_elem.
destruct_rel_mod_eval.
simplify_evals.
eexists; repeat split; mauto 3.
eapply H2; eauto.
assert {{ Δ ⊢ M[σ] : A[σ] }} by mauto 3.
bulky_rewrite_in H23.
unshelve (econstructor; eauto).
+ trivial.
+ eassert {{ Δ ⊢ M[σ] N : ^_ }} by (eapply wf_app'; eassumption).
autorewrite with mctt in H25.
trivial.
+ mauto using domain_app_per.
+ intros.
saturate_weakening_escape.
progressive_invert H26.
destruct (H15 _ _ _ _ _ ltac:(eassumption) ltac:(eassumption) ltac:(eassumption) equiv_n).
handle_functional_glu_univ_elem.
autorewrite with mctt.
etransitivity.
* rewrite sub_decompose_q_typ; mauto 4.
* simpl.
rewrite <- @sub_eq_q_sigma_id_extend; mauto 4.
rewrite <- @exp_eq_sub_compose_typ; mauto 3;
[eapply wf_exp_eq_app_cong' |].
-- specialize (H12 _ {{{σ ∘ σ0}}} _ ltac:(mauto 3) ltac:(eassumption)).
rewrite wf_exp_eq_sub_compose with (M := M) in H12; mauto 3.
bulky_rewrite_in H12.
-- rewrite <- @exp_eq_sub_compose_typ; mauto 3.
-- econstructor; mauto 3.
autorewrite with mctt.
rewrite <- @exp_eq_sub_compose_typ; mauto 3.
- handle_functional_glu_univ_elem.
handle_per_univ_elem_irrel.
pose proof H8.
invert_per_univ_elem H8.
econstructor; mauto 3.
+ invert_glu_rel1. trivial.
+ eapply glu_univ_elem_trm_typ; eauto.
+ intros.
saturate_weakening_escape.
invert_glu_rel1. clear_dups.
progressive_invert H20.
assert {{ Γ ⊢w Id : Γ }} by mauto 4.
pose proof (H10 _ _ H24).
specialize (H10 _ _ H19).
assert {{ Γ ⊢ IT[Id] ≈ IT : Type@i }} by mauto 3.
bulky_rewrite_in H25.
destruct (H11 _ _ _ ltac:(eassumption) ltac:(eassumption)) as [].
specialize (H29 _ _ _ H19 H9).
rewrite H5 in *.
autorewrite with mctt.
eassert {{ Δ ⊢ M[σ] : ^_ }} by (mauto 2).
autorewrite with mctt in H30.
rewrite @wf_exp_eq_pi_eta' with (M := {{{ M[σ] }}}); [| trivial].
cbn [nf_to_exp].
eapply wf_exp_eq_fn_cong'; eauto.
pose proof (var_per_elem (length Δ) H0).
destruct_rel_mod_eval.
simplify_evals.
destruct (H2 _ ltac:(eassumption) _ ltac:(eassumption)) as [? []].
specialize (H12 _ _ _ _ ltac:(trivial) (var_glu_elem_bot _ _ _ _ _ _ H H10)).
autorewrite with mctt in H12.
specialize (H14 {{{Δ, IT[σ]}}} {{{σ ∘ Wk}}} _ _ ltac:(mauto) ltac:(eassumption) ltac:(eassumption)) as [? []].
apply_equiv_left.
destruct_rel_mod_app.
simplify_evals.
deepexec H1 ltac:(fun H => pose proof H).
specialize (H33 _ _ _ _ _ ltac:(eassumption) ltac:(eassumption) ltac:(eassumption) ltac:(eassumption)) as [].
specialize (H40 _ {{{Id}}} _ ltac:(mauto 3) ltac:(eassumption)).
do 2 (rewrite wf_exp_eq_sub_id in H40; mauto 3).
etransitivity; [|eassumption].
simpl.
assert {{ Δ, IT[σ] ⊢ #0 : IT[σ∘Wk] }} by (rewrite <- @exp_eq_sub_compose_typ; mauto 3).
rewrite <- @sub_eq_q_sigma_id_extend; mauto 4.
rewrite <- @exp_eq_sub_compose_typ; mauto 2.
2:eapply sub_q; mauto 4.
2:gen_presup H41; econstructor; mauto 3.
eapply wf_exp_eq_app_cong'; [| mauto 3].
symmetry.
rewrite <- wf_exp_eq_pi_sub; mauto 4.
- econstructor; eauto.
intros.
progressive_inversion.
firstorder.
- handle_functional_glu_univ_elem.
apply_equiv_left.
econstructor; eauto.
- handle_functional_glu_univ_elem.
invert_glu_rel1.
econstructor; eauto.
+ intros s. destruct (H3 s) as [? []].
mauto.
+ intros.
progressive_inversion.
specialize (H11 (length Δ)) as [? []].
firstorder.
Qed.
Corollary realize_glu_typ_top : forall a i P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A,
{{ Γ ⊢ A ® P }} ->
{{ Γ ⊢ A ® glu_typ_top i a }}.
Proof.
intros.
pose proof H.
eapply glu_univ_elem_per_univ in H.
simpl in *. destruct_all.
eapply realize_glu_univ_elem_gen; eauto.
Qed.
Theorem realize_glu_elem_bot : forall a i P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A M m,
{{ Γ ⊢ M : A ® m ∈ glu_elem_bot i a }} ->
{{ Γ ⊢ M : A ® ⇑ a m ∈ El }}.
Proof.
intros.
eapply realize_glu_univ_elem_gen; eauto.
Qed.
Theorem realize_glu_elem_top : forall a i P El,
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
forall Γ A M m,
{{ Γ ⊢ M : A ® m ∈ El }} ->
{{ Γ ⊢ M : A ® m ∈ glu_elem_top i a }}.
Proof.
intros.
pose proof H.
eapply glu_univ_elem_per_univ in H.
simpl in *. destruct_all.
eapply realize_glu_univ_elem_gen; eauto.
eapply glu_univ_elem_per_elem; eauto.
Qed.
#[export]
Hint Resolve realize_glu_typ_top realize_glu_elem_top : mctt.
Corollary var0_glu_elem : forall {i a P El Γ A},
{{ DG a ∈ glu_univ_elem i ↘ P ↘ El }} ->
{{ Γ ⊢ A ® P }} ->
{{ Γ, A ⊢ #0 : A[Wk] ® ⇑! a (length Γ) ∈ El }}.
Proof.
intros.
eapply realize_glu_elem_bot; mauto 4.
eauto using var_glu_elem_bot.
Qed.