Mctt.Core.Soundness.Realizability

From Coq Require Import Nat.

From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Semantic Require Import Realizability.
From Mctt.Core.Soundness.LogicalRelation Require Export Core.
Import Domain_Notations.

Open Scope list_scope.

Lemma wf_ctx_sub_ctx_lookup : forall n A Γ,
    {{ #n : A Γ }} ->
    forall Δ,
      {{ Δ Γ}} ->
      exists Δ1 A0 Δ2 A',
        Δ = Δ1 ++ A0 :: Δ2 /\
          n = length Δ1 /\
          A' = iter (S n) (fun A => {{{ A[Wk] }}}) A0 /\
          {{ #n : A' Δ }} /\
          {{ Δ A' A }}.
Proof.
  induction 1; intros; progressive_inversion.
  - exists nil.
    repeat eexists; mauto 4.
  - edestruct IHctx_lookup as [Δ1 [? [? [? [? [? [? []]]]]]]]; eauto 3.
    exists (A0 :: Δ1). subst.
    repeat eexists; mauto 4.
Qed.

Lemma var_arith : forall Γ1 Γ2 (A : typ),
    length (Γ1 ++ A :: Γ2) - length Γ2 - 1 = length Γ1.
Proof.
  intros.
  rewrite List.length_app. simpl.
  lia.
Qed.

Lemma var_weaken_gen : forall Δ σ Γ,
    {{ Δ w σ : Γ }} ->
    forall Γ1 Γ2 A0,
      Γ = Γ1 ++ A0 :: Γ2 ->
      {{ Δ #(length Γ1)[σ] #(length Δ - length Γ2 - 1) : ^(iter (S (length Γ1)) (fun A => {{{ A[Wk] }}}) A0)[σ] }}.
Proof.
  induction 1; intros; subst; gen_presups.
  - pose proof (app_ctx_vlookup _ _ _ _ ltac:(eassumption) eq_refl) as Hvar.
    gen_presup Hvar.
    clear_dups.
    apply wf_sub_id_inversion in Hτ.
    pose proof (wf_ctx_sub_length _ _ Hτ).
    transitivity {{{ #(length Γ1)[Id] }}}; [mauto 3 |].
    replace (length Γ) with (length (Γ1 ++ {{{ Γ2, A0 }}})) by lia.
    rewrite var_arith, H.
    bulky_rewrite.
  - pose proof (app_ctx_vlookup _ _ _ _ HΔ0 eq_refl) as Hvar.
    pose proof (app_ctx_lookup Γ1 A0 Γ2 _ eq_refl).
    gen_presup Hvar.
    clear_dups.
    assert {{ Δ', A }} by mauto 3.
    assert {{ Δ', A s Wk : ^(Γ1 ++ {{{ Γ2, A0 }}}) }} by mauto 3.
    transitivity {{{ #(length Γ1)[Wkτ] }}}; [mauto 3 |].
    rewrite H1.
    etransitivity; [eapply wf_exp_eq_sub_compose; mauto 3 |].
    pose proof (wf_ctx_sub_length _ _ H0).

    rewrite <- @exp_eq_sub_compose_typ; mauto 2.
    deepexec wf_ctx_sub_ctx_lookup ltac:(fun H => destruct H as [Γ1' [? [Γ2' [? [-> [? [-> []]]]]]]]).
    repeat rewrite List.length_app in *.
    replace (length Γ1) with (length Γ1') in * by lia.
    clear_refl_eqs.
    replace (length Γ2) with (length Γ2') by (simpl in *; lia).

    etransitivity.
    + eapply wf_exp_eq_sub_cong; [ |mauto 3].
      eapply wf_exp_eq_subtyp'.
      * eapply wf_exp_eq_var_weaken; [mauto 3|]; eauto.
      * mauto 4.
    + eapply wf_exp_eq_subtyp'.
      * eapply IHweakening with (Γ1 := A :: _).
        reflexivity.
      * eapply wf_subtyp_subst; [ |mauto 3].
        simpl. eapply wf_subtyp_subst; mauto 3.
Qed.

Lemma var_glu_elem_bot : forall a i P El Γ A,
    {{ DG a glu_univ_elem i P El }} ->
    {{ Γ A ® P }} ->
    {{ Γ, A #0 : A[Wk] ® !(length Γ) glu_elem_bot i a }}.
Proof.
  intros. saturate_glu_info.
  econstructor; mauto 4.
  - eapply glu_univ_elem_typ_monotone; eauto.
    mauto 4.
  - intros. progressive_inversion.
    exact (var_weaken_gen _ _ _ H2 nil _ _ eq_refl).
Qed.

#[local]
Hint Rewrite -> wf_sub_eq_extend_compose using mauto 4 : mctt.

Theorem realize_glu_univ_elem_gen : forall a i P El,
    {{ DG a glu_univ_elem i P El }} ->
    (forall Γ A R,
        {{ DF a a per_univ_elem i R }} ->
        {{ Γ A ® P }} ->
        {{ Γ A ® glu_typ_top i a }}) /\
      (forall Γ M A m,
          
We repeat this to get the relation between a and P more easily after applying induction 1.
          {{ DG a glu_univ_elem i P El }} ->
          {{ Γ M : A ® m glu_elem_bot i a }} ->
          {{ Γ M : A ® a m El }}) /\
      (forall Γ M A m R,
          
We repeat this to get the relation between a and P more easily after applying induction 1.
          {{ DG a glu_univ_elem i P El }} ->
          {{ Γ M : A ® m El }} ->
          {{ DF a a per_univ_elem i R }} ->
          {{ Dom m m R }} ->
          {{ Γ M : A ® m glu_elem_top i a }}).
Proof.
  simpl. induction 1 using glu_univ_elem_ind.
  all:split; [| split]; intros;
    apply_equiv_left;
    gen_presups;
    try match_by_head1 per_univ_elem ltac:(fun H => pose proof (per_univ_then_per_top_typ H));
    match_by_head glu_elem_bot ltac:(fun H => destruct H as []);
    destruct_all.
  - econstructor; eauto; intros.
    progressive_inversion.
    transitivity {{{ Type@j[σ] }}}; mauto 4.
  - handle_functional_glu_univ_elem.
    match_by_head glu_univ_elem invert_glu_univ_elem.
    clear_dups.
    apply_equiv_left.
    repeat split; eauto.
    repeat eexists.
    + glu_univ_elem_econstructor; eauto; reflexivity.
    + simpl. repeat split.
      * rewrite <- H5. trivial.
      * intros.
        saturate_weakening_escape.
        rewrite <- wf_exp_eq_typ_sub; try eassumption.
        rewrite <- H5.
        firstorder.
  - deepexec glu_univ_elem_per_univ ltac:(fun H => pose proof H).
    firstorder.
    specialize (H _ _ _ H10) as [? []].
    econstructor; mauto 3.
    + apply_equiv_left. trivial.
    + intros.
      saturate_weakening_escape.
      deepexec H ltac:(fun H => destruct H).
      progressive_invert H16.
      deepexec H20 ltac:(fun H => pose proof H).
      functional_read_rewrite_clear.
      bulky_rewrite.

  - econstructor; eauto; intros.
    progressive_inversion.
    transitivity {{{ [σ] }}}; mauto 3.
  - handle_functional_glu_univ_elem.
    match_by_head glu_univ_elem invert_glu_univ_elem.
    apply_equiv_left.
    repeat split; eauto.
    econstructor; trivial.

    intros.
    saturate_weakening_escape.
    assert {{ Δ A[σ] [σ] : Type @ i }} by mauto 3.
    rewrite <- wf_exp_eq_nat_sub; try eassumption.
    mauto 3.
  - econstructor; mauto 3.
    + bulky_rewrite. mauto 3.
    + apply_equiv_left. trivial.
    + intros.
      saturate_weakening_escape.
      bulky_rewrite.
      mauto using glu_nat_readback.

  - match_by_head pi_glu_typ_pred progressive_invert.
    handle_per_univ_elem_irrel.
    invert_per_univ_elem H6.
    econstructor; eauto; intros.
    + gen_presups. trivial.
    + saturate_weakening_escape.
      assert {{ Γ w Id : Γ }} by mauto 4.
      assert {{ Δ IT[σ] ® IP }} by mauto 3.
      assert (IP Γ {{{ IT[Id] }}}) as HITId by mauto 3.
      bulky_rewrite_in HITId.
      assert {{ Γ IT[Id] IT : Type@i }} by mauto 3.
      dir_inversion_clear_by_head read_typ.
      assert {{ Γ IT ® glu_typ_top i a }} as [] by mauto 3.
      bulky_rewrite.
      simpl. apply wf_exp_eq_pi_cong'; [firstorder |].
      pose proof (var_per_elem (length Δ) H0).
      destruct_rel_mod_eval.
      simplify_evals.
      destruct (H2 _ ltac:(eassumption) _ ltac:(eassumption)) as [? []].
      assert (IEl {{{ Δ, IT[σ] }}} {{{ IT[σ][Wk] }}} {{{ #0 }}} d{{{ ⇑! a (length Δ) }}}) by mauto 3 using var_glu_elem_bot.
      autorewrite with mctt in H31.
      specialize (H14 {{{ Δ, IT[σ] }}} {{{ σWk }}} _ _ ltac:(mauto) ltac:(eassumption) ltac:(eassumption)).
      specialize (H8 _ _ _ ltac:(eassumption) ltac:(eassumption)) as [].
      etransitivity; [| eapply H33]; mauto 3.
  - handle_functional_glu_univ_elem.
    apply_equiv_left.
    invert_glu_rel1.
    econstructor; try eapply per_bot_then_per_elem; eauto.

    intros.
    saturate_weakening_escape.
    saturate_glu_info.
    match_by_head1 per_univ_elem invert_per_univ_elem.
    destruct_rel_mod_eval.
    simplify_evals.
    eexists; repeat split; mauto 3.
    eapply H2; eauto.
    assert {{ Δ M[σ] : A[σ] }} by mauto 3.
    bulky_rewrite_in H23.
    unshelve (econstructor; eauto).
    + trivial.
    + eassert {{ Δ M[σ] N : ^_ }} by (eapply wf_app'; eassumption).
      autorewrite with mctt in H25.
      trivial.
    + mauto using domain_app_per.
    + intros.
      saturate_weakening_escape.
      progressive_invert H26.
      destruct (H15 _ _ _ _ _ ltac:(eassumption) ltac:(eassumption) ltac:(eassumption) equiv_n).
      handle_functional_glu_univ_elem.
      autorewrite with mctt.

      etransitivity.
      * rewrite sub_decompose_q_typ; mauto 4.
      * simpl.
        rewrite <- @sub_eq_q_sigma_id_extend; mauto 4.
        rewrite <- @exp_eq_sub_compose_typ; mauto 3;
          [eapply wf_exp_eq_app_cong' |].
        -- specialize (H12 _ {{{σ σ0}}} _ ltac:(mauto 3) ltac:(eassumption)).
           rewrite wf_exp_eq_sub_compose with (M := M) in H12; mauto 3.
           bulky_rewrite_in H12.
        -- rewrite <- @exp_eq_sub_compose_typ; mauto 3.
        -- econstructor; mauto 3.
           autorewrite with mctt.
           rewrite <- @exp_eq_sub_compose_typ; mauto 3.

  - handle_functional_glu_univ_elem.
    handle_per_univ_elem_irrel.
    pose proof H8.
    invert_per_univ_elem H8.
    econstructor; mauto 3.
    + invert_glu_rel1. trivial.
    + eapply glu_univ_elem_trm_typ; eauto.
    + intros.
      saturate_weakening_escape.
      invert_glu_rel1. clear_dups.
      progressive_invert H20.

      assert {{ Γ w Id : Γ }} by mauto 4.
      pose proof (H10 _ _ H24).
      specialize (H10 _ _ H19).
      assert {{ Γ IT[Id] IT : Type@i }} by mauto 3.
      bulky_rewrite_in H25.
      destruct (H11 _ _ _ ltac:(eassumption) ltac:(eassumption)) as [].
      specialize (H29 _ _ _ H19 H9).
      rewrite H5 in *.
      autorewrite with mctt.
      eassert {{ Δ M[σ] : ^_ }} by (mauto 2).
      autorewrite with mctt in H30.
      rewrite @wf_exp_eq_pi_eta' with (M := {{{ M[σ] }}}); [| trivial].
      cbn [nf_to_exp].
      eapply wf_exp_eq_fn_cong'; eauto.

      pose proof (var_per_elem (length Δ) H0).
      destruct_rel_mod_eval.
      simplify_evals.
      destruct (H2 _ ltac:(eassumption) _ ltac:(eassumption)) as [? []].
      specialize (H12 _ _ _ _ ltac:(trivial) (var_glu_elem_bot _ _ _ _ _ _ H H10)).
      autorewrite with mctt in H12.
      specialize (H14 {{{Δ, IT[σ]}}} {{{σ Wk}}} _ _ ltac:(mauto) ltac:(eassumption) ltac:(eassumption)) as [? []].
      apply_equiv_left.
      destruct_rel_mod_app.
      simplify_evals.
      deepexec H1 ltac:(fun H => pose proof H).
      specialize (H33 _ _ _ _ _ ltac:(eassumption) ltac:(eassumption) ltac:(eassumption) ltac:(eassumption)) as [].
      specialize (H40 _ {{{Id}}} _ ltac:(mauto 3) ltac:(eassumption)).
      do 2 (rewrite wf_exp_eq_sub_id in H40; mauto 3).
      etransitivity; [|eassumption].
      simpl.
      assert {{ Δ, IT[σ] #0 : IT[σWk] }} by (rewrite <- @exp_eq_sub_compose_typ; mauto 3).
      rewrite <- @sub_eq_q_sigma_id_extend; mauto 4.
      rewrite <- @exp_eq_sub_compose_typ; mauto 2.
      2:eapply sub_q; mauto 4.
      2:gen_presup H41; econstructor; mauto 3.
      eapply wf_exp_eq_app_cong'; [| mauto 3].
      symmetry.
      rewrite <- wf_exp_eq_pi_sub; mauto 4.

  - econstructor; eauto.
    intros.
    progressive_inversion.
    firstorder.
  - handle_functional_glu_univ_elem.
    apply_equiv_left.
    econstructor; eauto.
  - handle_functional_glu_univ_elem.
    invert_glu_rel1.
    econstructor; eauto.
    + intros s. destruct (H3 s) as [? []].
      mauto.
    + intros.
      progressive_inversion.
      specialize (H11 (length Δ)) as [? []].
      firstorder.
Qed.

Corollary realize_glu_typ_top : forall a i P El,
    {{ DG a glu_univ_elem i P El }} ->
    forall Γ A,
      {{ Γ A ® P }} ->
      {{ Γ A ® glu_typ_top i a }}.
Proof.
  intros.
  pose proof H.
  eapply glu_univ_elem_per_univ in H.
  simpl in *. destruct_all.
  eapply realize_glu_univ_elem_gen; eauto.
Qed.

Theorem realize_glu_elem_bot : forall a i P El,
    {{ DG a glu_univ_elem i P El }} ->
    forall Γ A M m,
      {{ Γ M : A ® m glu_elem_bot i a }} ->
      {{ Γ M : A ® a m El }}.
Proof.
  intros.
  eapply realize_glu_univ_elem_gen; eauto.
Qed.

Theorem realize_glu_elem_top : forall a i P El,
    {{ DG a glu_univ_elem i P El }} ->
    forall Γ A M m,
      {{ Γ M : A ® m El }} ->
      {{ Γ M : A ® m glu_elem_top i a }}.
Proof.
  intros.
  pose proof H.
  eapply glu_univ_elem_per_univ in H.
  simpl in *. destruct_all.
  eapply realize_glu_univ_elem_gen; eauto.
  eapply glu_univ_elem_per_elem; eauto.
Qed.

#[export]
Hint Resolve realize_glu_typ_top realize_glu_elem_top : mctt.

Corollary var0_glu_elem : forall {i a P El Γ A},
    {{ DG a glu_univ_elem i P El }} ->
    {{ Γ A ® P }} ->
    {{ Γ, A #0 : A[Wk] ® ⇑! a (length Γ) El }}.
Proof.
  intros.
  eapply realize_glu_elem_bot; mauto 4.
  eauto using var_glu_elem_bot.
Qed.