Mctt.Core.Soundness.FunctionCases

From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness Require Import FundamentalTheorem UniverseCases.
From Mctt.Core.Soundness Require Import
  ContextCases
  LogicalRelation
  SubstitutionCases
  SubtypingCases
  TermStructureCases
  UniverseCases.
Import Domain_Notations.

Lemma cons_glu_sub_pred_pi_helper : forall {Γ Sb Γ' σ ρ A a i P El Γ'' τ M c},
    {{ EG Γ glu_ctx_env Sb }} ->
    {{ Γ' s σ ® ρ Sb }} ->
    {{ Γ A : Type@i }} ->
    {{ A ρ a }} ->
    {{ DG a glu_univ_elem i P El }} ->
    {{ Γ'' w τ : Γ' }} ->
    {{ Γ'' M : A[σ][τ] ® c El }} ->
    {{ Γ'' s στ,,M ® ρ c cons_glu_sub_pred i Γ A Sb }}.
Proof.
  intros.
  assert {{ Γ'' s στ ® ρ Sb }} by (eapply glu_ctx_env_sub_monotone; mauto 3).
  eapply cons_glu_sub_pred_helper; try eassumption.
  assert {{ Γ' s σ : Γ }} by mauto 2.
  assert {{ Γ'' s τ : Γ' }} by mauto 2.
  enough {{ Γ'' A[στ] A[σ][τ] : Type@i }} as ->; mauto 3.
Qed.

#[local]
Hint Resolve cons_glu_sub_pred_pi_helper : mctt.

Lemma glu_rel_exp_pi : forall {Γ A B i},
    {{ Γ A : Type@i }} ->
    {{ Γ, A B : Type@i }} ->
    {{ Γ Π A B : Type@i }}.
Proof.
  intros * HA HB.
  assert {{ Γ }} as [SbΓ] by mauto.
  assert {{ Γ A : Type@i }} by mauto.
  invert_glu_rel_exp HA.
  assert {{ EG Γ, A glu_ctx_env cons_glu_sub_pred i Γ A SbΓ }} by (econstructor; mauto; reflexivity).
  assert {{ Γ, A B : Type@i }} by mauto.
  invert_glu_rel_exp HB.
  eapply glu_rel_exp_of_typ; mauto 3.
  intros.
  assert {{ Δ s σ : Γ }} by mauto 4.
  split; mauto 3.
  apply_glu_rel_judge.
  rename m into a.
  assert {{ Γ Π A B : Type@i }} as [env_relΓ]%rel_exp_of_typ_inversion1 by mauto 3 using completeness_fundamental_exp.
  assert {{ Γ, A B : Type@i }} as [env_relΓA]%rel_exp_of_typ_inversion1 by mauto 3 using completeness_fundamental_exp.
  destruct_conjs.
  match_by_head1 (per_ctx_env env_relΓA) invert_per_ctx_env.
  pose env_relΓA.
  assert {{ Dom ρ ρ env_relΓ }} by (eapply glu_ctx_env_per_env; revgoals; eassumption).
  (on_all_hyp: destruct_rel_by_assumption env_relΓ).
  simplify_evals.
  eexists; repeat split; mauto.
  intros.
  match_by_head1 glu_univ_elem ltac:(fun H => directed invert_glu_univ_elem H).
  handle_per_univ_elem_irrel.
  handle_functional_glu_univ_elem.
  econstructor; mauto 3; intros Δ' τ **;
    assert {{ Δ' s τ : Δ }} by mauto 2.
  - assert {{ Δ' s σ τ ® ρ SbΓ }} by (eapply glu_ctx_env_sub_monotone; eassumption).
    assert {{ Δ' s σ τ : Γ }} by mauto 2.
    assert (glu_rel_exp_with_sub (S i) Δ' A {{{ Type @ i }}} {{{ σ τ }}} ρ) as [] by mauto 4.
    simplify_evals.
    match_by_head glu_univ_elem ltac:(fun H => directed invert_glu_univ_elem H).
    apply_predicate_equivalence.
    unfold univ_glu_exp_pred' in *.
    destruct_conjs.
    handle_functional_glu_univ_elem.
    autorewrite with mctt.
    eassumption.
  - assert {{ Dom ρ m ρ m env_relΓA }} as HrelΓA by (apply_relation_equivalence; mautosolve 2).
    apply_relation_equivalence.
    (on_all_hyp: fun H => destruct (H _ _ HrelΓA)).
    destruct_by_head per_univ.
    functional_eval_rewrite_clear.
    match goal with
    | _: {{ B ρ m ^?a }} |- _ =>
        rename a into b
    end.
    assert {{ Δ' M : A[σ][τ] }} by mauto 3 using glu_univ_elem_trm_escape.
    assert {{ DG b glu_univ_elem i OP m equiv_m OEl m equiv_m }} by mauto 2.
    erewrite <- @sub_decompose_q_typ; mauto 3.
    assert {{ Δ' s (στ),,M ® ρ m cons_glu_sub_pred i Γ A SbΓ }} as Hconspred by mauto 2.
    (on_all_hyp: fun H => destruct (H _ _ _ Hconspred)).
    simplify_evals.
    match_by_head glu_univ_elem ltac:(fun H => directed invert_glu_univ_elem H).
    apply_predicate_equivalence.
    unfold univ_glu_exp_pred' in *.
    destruct_conjs.
    handle_functional_glu_univ_elem.
    eassumption.
Qed.

#[export]
Hint Resolve glu_rel_exp_pi : mctt.

Lemma glu_rel_exp_of_pi : forall {Γ M A B i Sb},
    {{ EG Γ glu_ctx_env Sb }} ->
    {{ Γ Π A B : Type@i }} ->
    (forall Δ σ ρ,
        {{ Δ s σ ® ρ Sb }} ->
        exists a m,
          {{ A ρ a }} /\
            {{ M ρ m }} /\
            forall (P : glu_typ_pred) (El : glu_exp_pred), {{ DG Π a ρ B glu_univ_elem i P El }} -> {{ Δ M[σ] : (Π A B)[σ] ® m El }}) ->
    {{ Γ M : Π A B }}.
Proof.
  intros * ? [env_relΓ] Hbody.
  destruct_conjs.
  eexists; split; mauto 3.
  eexists; intros.
  edestruct Hbody as [? [? [? []]]]; mauto 3.
  assert {{ Dom ρ ρ env_relΓ }} by (eapply glu_ctx_env_per_env; revgoals; eassumption).
  (on_all_hyp: destruct_rel_by_assumption env_relΓ).
  destruct_by_head rel_typ.
  invert_rel_typ_body.
  destruct_by_head rel_exp.
  destruct_conjs.
  simplify_evals.
  mauto 4.
Qed.

Lemma glu_rel_exp_fn_helper : forall {Γ M A B i},
    {{ Γ A : Type@i }} ->
    {{ Γ, A B : Type@i }} ->
    {{ Γ, A M : B }} ->
    {{ Γ λ A M : Π A B }}.
Proof.
  intros * HA HB HM.
  assert {{ Γ }} as [SbΓ] by mauto 3.
  assert {{ Γ A : Type@i }} by mauto 3.
  invert_glu_rel_exp HA.
  pose (SbΓA := cons_glu_sub_pred i Γ A SbΓ).
  assert {{ EG Γ, A glu_ctx_env SbΓA }} by (econstructor; mauto 3; reflexivity).
  assert {{ Γ, A M : B }} by mauto 3.
  invert_glu_rel_exp HM.
  destruct_conjs.
  assert {{ Γ, A B : Type@i }} by mauto.
  assert {{ Γ, A M : B }} as [env_relΓA] by mauto using completeness_fundamental_exp.
  destruct_conjs.
  pose env_relΓA.
  match_by_head (per_ctx_env env_relΓA) invert_per_ctx_env.
  rename tail_rel into env_relΓ.
  apply_relation_equivalence.
  assert {{ Γ Π A B : Type@i }} by mauto using completeness_fundamental_exp.
  eapply glu_rel_exp_of_pi; mauto.
  intros.
  assert {{ Δ s σ : Γ }} by mauto 4.
  assert {{ Dom ρ ρ env_relΓ }} by (eapply glu_ctx_env_per_env; revgoals; eassumption).
  destruct_rel_typ.
  destruct_glu_rel_exp_with_sub.
  simplify_evals.
  match_by_head glu_univ_elem ltac:(fun H => directed invert_glu_univ_elem H).
  apply_predicate_equivalence.
  unfold univ_glu_exp_pred' in *.
  destruct_conjs.
  handle_functional_glu_univ_elem.
  match goal with
  | H : {{ DG a glu_univ_elem ?i ?P ?El }} |- _ =>
      rename P into Pa;
      rename El into Ela
  end.
  do 2 eexists; repeat split; mauto.
  intros.
  match_by_head glu_univ_elem ltac:(fun H => directed invert_glu_univ_elem H).
  handle_per_univ_elem_irrel.
  handle_functional_glu_univ_elem.
  match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
  apply_relation_equivalence.
  assert {{ Δ, A[σ] B[q σ] : Type@i }} by mauto 3.
  econstructor; mauto 3; intros.
  - assert {{ Dom ρ c ρ c' env_relΓA }} as HrelΓA by (apply_relation_equivalence; mautosolve 2).
    destruct_rel_mod_eval.
    apply_relation_equivalence.
    (on_all_hyp: fun H => destruct (H _ _ HrelΓA) as [? [[] []]]).
    handle_per_univ_elem_irrel.
    econstructor; mauto 3.
  - eapply glu_univ_elem_typ_monotone; mauto 3.
  - assert {{ Dom ρ n ρ n env_relΓA }} as HrelΓA by (apply_relation_equivalence; mautosolve 2).
    destruct_rel_mod_eval.
    apply_relation_equivalence.
    (on_all_hyp: fun H => destruct (H _ _ HrelΓA) as [? [[] []]]).
    handle_per_univ_elem_irrel.
    eexists; split; mauto 3.
    match goal with
    | _: {{ B ρ n ^?a }} |- _ =>
        rename a into b
    end.
    assert {{ DG b glu_univ_elem i OP n equiv_n OEl n equiv_n }} by mauto 3.
    assert {{ Δ0 s σ0 : Δ }} by mauto 3.
    assert {{ Δ0 N : A[σ][σ0] }} by mauto 2 using glu_univ_elem_trm_escape.
    erewrite <- @sub_decompose_q_typ; mauto 2.
    assert {{ Δ0 (λ A M)[σ][σ0] N M[(σσ0),,N] : B[σσ0,,N] }} as ->.
    {
      assert {{ Δ0 s σσ0 : Γ }} by mauto 3.
      assert {{ Δ0, A[σσ0] M[q (σσ0)] : B[q (σσ0)] }} by mauto 3.
      assert {{ Δ0 (λ A M)[σ][σ0] (λ A M)[σσ0] : (Π A B)[σσ0] }} by (symmetry; mauto 3).
      assert {{ Δ0 (λ A M)[σ][σ0] (λ A[σσ0] M[q (σσ0)]) : (Π A B)[σσ0] }} by mauto 3.
      assert {{ Δ0 (λ A M)[σ][σ0] (λ A[σσ0] M[q (σσ0)]) : Π A[σσ0] B[q (σσ0)] }} by mauto 3.
      assert {{ Δ0 N : A[σσ0] }} by mauto 3.
      assert {{ Δ0 (λ A M)[σ][σ0] N (λ A[σσ0] M[q (σσ0)]) N : B[q (σσ0)][Id,,N] }} by mauto 3.
      assert {{ Δ0 (λ A M)[σ][σ0] N M[q (σσ0)][Id,,N] : B[q (σσ0)][Id,,N] }} by mauto 3.
      transitivity {{{ M[q (σσ0)][Id,,N] }}}; [mauto 3 |].
      assert {{ Δ0 s Id,,N : Δ0, A[σσ0] }} by mauto 3.
      assert {{ Δ0, A[σσ0] s q (σσ0) : Γ, A }} by mauto 2.
      assert {{ Δ0 s q (σσ0)(Id,,N) σσ0,,N : Γ, A }} by mauto 2.
      assert {{ Δ0 B[q (σσ0)(Id,,N)] B[σσ0,,N] : Type@i }} as <- by mauto 2.
      transitivity {{{ M[q (σσ0)(Id,,N)] }}}; mauto 3.
    }
    assert {{ Δ0 N : A[σ][σ0] ® n Ela }} by mauto 3.
    assert {{ Δ0 s (σσ0),,N ® ρ n SbΓA }} as HSbΓA by (unfold SbΓA; mauto 2).
    (on_all_hyp: fun H => destruct (H _ _ _ HSbΓA)).
    simplify_evals.
    match_by_head glu_univ_elem ltac:(fun H => directed invert_glu_univ_elem H).
    handle_functional_glu_univ_elem.
    mauto 3.
Qed.

Lemma glu_rel_exp_fn : forall {Γ M A B i},
    {{ Γ A : Type@i }} ->
    {{ Γ, A M : B }} ->
    {{ Γ λ A M : Π A B }}.
Proof.
  intros * HA HM.
  assert (exists j, {{ Γ, A B : Type@j }}) as [j] by mauto 3.
  assert {{ Γ }} by mauto 3.
  assert (i <= max i j) by lia.
  assert {{ Γ Type@i Type@(max i j) }} by mauto 4.
  assert {{ Γ A : Type@(max i j) }} by mauto 3.
  assert {{ Γ, A }} by mauto 3.
  assert (j <= max i j) by lia.
  assert {{ Γ, A Type@j Type@(max i j) }} by mauto 4.
  assert {{ Γ, A B : Type@(max i j) }} by mauto 3.
  mauto 3 using glu_rel_exp_fn_helper.
Qed.

#[export]
Hint Resolve glu_rel_exp_fn : mctt.

Lemma glu_rel_exp_app_helper : forall {Γ M N A B i},
    {{ Γ A : Type@i }} ->
    {{ Γ, A B : Type@i }} ->
    {{ Γ M : Π A B }} ->
    {{ Γ N : A }} ->
    {{ Γ M N : B[Id,,N] }}.
Proof.
  intros * HA HB HM HN.
  assert {{ Γ }} as [SbΓ] by mauto 3.
  assert {{ Γ Π A B : Type@i }} by mauto 4.
  assert {{ Γ N : A }} by mauto 2.
  invert_glu_rel_exp HN.
  assert {{ Γ A : Type@i }} by mauto 3.
  invert_glu_rel_exp HA.
  pose (SbΓA := cons_glu_sub_pred i Γ A SbΓ).
  assert {{ EG Γ, A glu_ctx_env SbΓA }} by (econstructor; mauto 3; reflexivity).
  assert {{ Γ, A B : Type@i }} by mauto 2.
  invert_glu_rel_exp HB.
  destruct_conjs.
  assert {{ Γ M : Π A B }} by mauto 2.
  invert_glu_rel_exp HM.
  eexists; split; [eassumption |].
  eexists.
  intros.
  destruct_glu_rel_exp_with_sub.
  simplify_evals.
  match_by_head glu_univ_elem ltac:(fun H => directed invert_glu_univ_elem H).
  apply_predicate_equivalence.
  unfold univ_glu_exp_pred' in *.
  destruct_conjs.
  handle_functional_glu_univ_elem.
  match_by_head per_univ_elem ltac:(fun H => directed invert_per_univ_elem H).
  inversion_clear_by_head pi_glu_exp_pred.
  match goal with
  | _: glu_univ_elem i ?P' ?El' a,
      _: {{ A ρ ^?a' }},
      _: {{ N ρ ^?n' }} |- _ =>
      rename a' into a;
      rename n' into n;
      rename P' into Pa;
      rename El' into Ela
  end.
  assert {{ Dom a a per_univ i }} as [] by mauto 3.
  handle_per_univ_elem_irrel.
  assert {{ Dom n n in_rel }} by (eapply glu_univ_elem_per_elem; revgoals; eassumption).
  (on_all_hyp: destruct_rel_by_assumption in_rel).
  simplify_evals.
  match goal with
  | _: {{ B ρ n ^?b' }},
      _: {{ $| m & n |↘ ^?mn' }} |- _ =>
      rename b' into b;
      rename mn' into mn
  end.
  eapply mk_glu_rel_exp_with_sub''; mauto 3.
  intros.
  match_by_head1 (in_rel n n) ltac:(fun H => rename H into equiv_n).
  assert {{ DG b glu_univ_elem i OP n equiv_n OEl n equiv_n }} by mauto 3.
  handle_functional_glu_univ_elem.
  assert {{ Δ w Id : Δ }} by mauto 3.
  assert {{ Δ IT[Id] ® Pa }} by mauto 2.
  assert {{ Δ IT[Id] : Type@i }} by (eapply glu_univ_elem_univ_lvl; revgoals; eassumption).
  assert {{ Δ IT : Type@i }} by mauto 2.
  assert {{ Δ IT[Id] A[σ] : Type@i }} as HAeq by (eapply glu_univ_elem_typ_unique_upto_exp_eq'; revgoals; eassumption).
  assert {{ Δ N[σ] : IT[Id] ® n Ela }} by (rewrite HAeq; eassumption).
  assert (exists mn : domain, {{ $| m & n |↘ mn }} /\ {{ Δ M[σ][Id] N[σ] : OT[Id,,N[σ]] ® mn OEl n equiv_n }}) as [] by mauto 2.
  destruct_conjs.
  functional_eval_rewrite_clear.
  assert {{ Δ N[σ] : A[σ][Id] ® n Ela }} by (autorewrite with mctt; eassumption).
  assert {{ Δ s σId,,N[σ] ® ρ n SbΓA }} as Hcons by (unfold SbΓA; mauto 2).
  (on_all_hyp: destruct_glu_rel_by_assumption SbΓA).
  simplify_evals.
  match_by_head1 glu_univ_elem ltac:(fun H => directed invert_glu_univ_elem H).
  apply_predicate_equivalence.
  unfold univ_glu_exp_pred' in *.
  destruct_conjs.
  handle_functional_glu_univ_elem.
  assert {{ Δ s σ : Γ }} by mauto 2.
  assert {{ Δ N[σ] : A[σ] }} by mauto 2.
  assert {{ Δ B[(Id,,N)][σ] B[σ,,N[σ]] : Type@i }} as -> by mauto 2.
  assert {{ Δ (M N)[σ] M[σ] N[σ] : B[σ,,N[σ]] }} as -> by mauto 2.
  assert {{ Δ M[σ][Id] N[σ] M[σ] N[σ] : B[σ,,N[σ]] }} as <-.
  {
    assert {{ Δ M[σ][Id] M[σ] : (Π A B)[σ] }} by mauto 2.
    assert {{ Δ M[σ][Id] M[σ] : Π A[σ] B[q σ] }} by mauto 3.
    assert {{ Δ M[σ][Id] N[σ] M[σ] N[σ] : B[q σ][Id,,N[σ]] }} as HGoal' by mauto 3.
    autorewrite with mctt in HGoal'.
    eassumption.
  }
  assert {{ Δ B[σ,,N[σ]] B[(σId),,N[σ]] : Type@i }} as ->
      by (eapply exp_eq_sub_cong_typ2'; try eassumption; econstructor; mauto 3).
  assert {{ Δ B[(σId),,N[σ]] OT[Id,,N[σ]] : Type@i }} as ->.
  {
    assert {{ Δ OT[Id,,N[σ]] ® OP n equiv_n }} by (eapply glu_univ_elem_trm_typ; eassumption).
    eapply glu_univ_elem_typ_unique_upto_exp_eq'; revgoals; eassumption.
  }
  eassumption.
Qed.

Lemma glu_rel_exp_app : forall {Γ M N A B i},
    {{ Γ, A B : Type@i }} ->
    {{ Γ M : Π A B }} ->
    {{ Γ N : A }} ->
    {{ Γ M N : B[Id,,N] }}.
Proof.
  intros * HB HM HN.
  assert {{ Γ, A }} as [SbΓA] by mauto 3.
  match_by_head (glu_ctx_env SbΓA) invert_glu_ctx_env.
  apply_predicate_equivalence.
  rename i0 into j.
  rename TSb into SbΓ.
  assert {{ Γ, A B : Type@i }} by mauto 4.
  assert {{ Γ A : Type@j }} by (eexists; intuition; eexists; mauto 4).
  assert {{ Γ }} by mauto 2.
  assert (j <= max i j) by lia.
  assert {{ Γ Type@j Type@(max i j) }} by mauto 3.
  assert {{ Γ A : Type@(max i j) }} by mauto 3.
  assert {{ Γ, A }} by mauto 2.
  assert (i <= max i j) by lia.
  assert {{ Γ, A Type@i Type@(max i j) }} by mauto 4.
  assert {{ Γ, A B : Type@(max i j) }} by mauto 3.
  mauto 2 using glu_rel_exp_app_helper.
Qed.

#[export]
Hint Resolve glu_rel_exp_app : mctt.