Mctt.Core.Soundness.FundamentalTheorem
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Soundness Require Import
ContextCases
FunctionCases
NatCases
SubstitutionCases
SubtypingCases
TermStructureCases
UniverseCases
EqualityCases.
From Mctt.Core.Soundness Require Export LogicalRelation.
Import Domain_Notations.
Section soundness_fundamental.
Theorem soundness_fundamental :
(forall Γ, {{ ⊢ Γ }} -> {{ ⊩ Γ }}) /\
(forall Γ A M, {{ Γ ⊢ M : A }} -> {{ Γ ⊩ M : A }}) /\
(forall Γ Δ σ, {{ Γ ⊢s σ : Δ }} -> {{ Γ ⊩s σ : Δ }}).
Proof.
apply syntactic_wf_mut_ind'; mauto 3.
Qed.
#[local]
Ltac solve_it := pose proof soundness_fundamental; firstorder.
Theorem soundness_fundamental_ctx : forall Γ, {{ ⊢ Γ }} -> {{ ⊩ Γ }}.
Proof. solve_it. Qed.
Theorem soundness_fundamental_exp : forall Γ M A, {{ Γ ⊢ M : A }} -> {{ Γ ⊩ M : A }}.
Proof. solve_it. Qed.
Theorem soundness_fundamental_sub : forall Γ σ Δ, {{ Γ ⊢s σ : Δ }} -> {{ Γ ⊩s σ : Δ }}.
Proof. solve_it. Qed.
End soundness_fundamental.
From Mctt.Core Require Import Base.
From Mctt.Core.Soundness Require Import
ContextCases
FunctionCases
NatCases
SubstitutionCases
SubtypingCases
TermStructureCases
UniverseCases
EqualityCases.
From Mctt.Core.Soundness Require Export LogicalRelation.
Import Domain_Notations.
Section soundness_fundamental.
Theorem soundness_fundamental :
(forall Γ, {{ ⊢ Γ }} -> {{ ⊩ Γ }}) /\
(forall Γ A M, {{ Γ ⊢ M : A }} -> {{ Γ ⊩ M : A }}) /\
(forall Γ Δ σ, {{ Γ ⊢s σ : Δ }} -> {{ Γ ⊩s σ : Δ }}).
Proof.
apply syntactic_wf_mut_ind'; mauto 3.
Qed.
#[local]
Ltac solve_it := pose proof soundness_fundamental; firstorder.
Theorem soundness_fundamental_ctx : forall Γ, {{ ⊢ Γ }} -> {{ ⊩ Γ }}.
Proof. solve_it. Qed.
Theorem soundness_fundamental_exp : forall Γ M A, {{ Γ ⊢ M : A }} -> {{ Γ ⊩ M : A }}.
Proof. solve_it. Qed.
Theorem soundness_fundamental_sub : forall Γ σ Δ, {{ Γ ⊢s σ : Δ }} -> {{ Γ ⊩s σ : Δ }}.
Proof. solve_it. Qed.
End soundness_fundamental.