Mctt.Core.Completeness.NatCases
From Coq Require Import Morphisms_Relations.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness Require Import LogicalRelation SubstitutionCases TermStructureCases UniverseCases.
From Mctt.Core.Semantic Require Import Realizability.
Import Domain_Notations.
Lemma rel_exp_of_nat_inversion : forall {Γ M M'},
{{ Γ ⊨ M ≈ M' : ℕ }} ->
exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}),
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
rel_exp M ρ M' ρ' per_nat.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists.
eexists; [eassumption |].
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
eassumption.
Qed.
Lemma rel_exp_of_nat : forall {Γ M M'},
(exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}),
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
rel_exp M ρ M' ρ' per_nat) ->
{{ Γ ⊨ M ≈ M' : ℕ }}.
Proof.
intros * [env_relΓ].
destruct_conjs.
unshelve eexists_rel_exp; [constructor |].
intros.
eexists; split; mauto.
econstructor; mauto.
per_univ_elem_econstructor; mauto.
reflexivity.
Qed.
#[export]
Hint Resolve rel_exp_of_nat : mctt.
Ltac eexists_rel_exp_of_nat :=
apply rel_exp_of_nat;
eexists;
eexists; [eassumption |].
Lemma valid_exp_nat : forall {Γ i},
{{ ⊨ Γ }} ->
{{ Γ ⊨ ℕ : Type@i }}.
Proof.
intros * [env_relΓ].
eexists_rel_exp_of_typ.
intros.
econstructor; mauto.
eexists.
per_univ_elem_econstructor.
reflexivity.
Qed.
#[export]
Hint Resolve valid_exp_nat : mctt.
Lemma rel_exp_nat_sub : forall {Γ σ i Δ},
{{ Γ ⊨s σ : Δ }} ->
{{ Γ ⊨ ℕ[σ] ≈ ℕ : Type@i }}.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_exp_of_typ.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor; mauto.
eexists.
per_univ_elem_econstructor.
reflexivity.
Qed.
#[export]
Hint Resolve rel_exp_nat_sub : mctt.
Lemma valid_exp_zero : forall {Γ},
{{ ⊨ Γ }} ->
{{ Γ ⊨ zero : ℕ }}.
Proof.
intros * [env_relΓ].
eexists_rel_exp_of_nat.
intros.
econstructor; mauto.
Qed.
#[export]
Hint Resolve valid_exp_zero : mctt.
Lemma rel_exp_zero_sub : forall {Γ σ Δ},
{{ Γ ⊨s σ : Δ }} ->
{{ Γ ⊨ zero[σ] ≈ zero : ℕ }}.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_exp_of_nat.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_zero_sub : mctt.
Lemma rel_exp_succ_sub : forall {Γ σ Δ M},
{{ Γ ⊨s σ : Δ }} ->
{{ Δ ⊨ M : ℕ }} ->
{{ Γ ⊨ (succ M)[σ] ≈ succ (M[σ]) : ℕ }}.
Proof.
intros * [env_relΓ] [env_relΔ]%rel_exp_of_nat_inversion.
destruct_conjs.
pose env_relΔ.
handle_per_ctx_env_irrel.
eexists_rel_exp_of_nat.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_succ_sub : mctt.
Lemma rel_exp_succ_cong : forall {Γ M M'},
{{ Γ ⊨ M ≈ M' : ℕ }} ->
{{ Γ ⊨ succ M ≈ succ M' : ℕ }}.
Proof.
intros * [env_relΓ]%rel_exp_of_nat_inversion.
destruct_conjs.
eexists_rel_exp_of_nat.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_succ_cong : mctt.
Lemma rel_exp_of_sub_id_zero_inversion : forall {Γ M M' A},
{{ Γ ⊨ M ≈ M' : A[Id,,zero] }} ->
exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}) i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists elem_rel, rel_typ i A d{{{ ρ ↦ zero }}} A d{{{ ρ' ↦ zero }}} elem_rel /\ rel_exp M ρ M' ρ' elem_rel.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
mauto.
Qed.
Lemma rel_exp_of_sub_id_zero : forall {Γ M M' A},
(exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}) i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists elem_rel, rel_typ i A d{{{ ρ ↦ zero }}} A d{{{ ρ' ↦ zero }}} elem_rel /\ rel_exp M ρ M' ρ' elem_rel) ->
{{ Γ ⊨ M ≈ M' : A[Id,,zero] }}.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
destruct_by_head rel_exp.
eexists.
split; econstructor; mauto.
Qed.
Ltac eexists_rel_exp_of_sub_id_zero :=
apply rel_exp_of_sub_id_zero;
eexists_rel_exp.
Lemma rel_exp_of_sub_wkwk_succ_var1_inversion : forall {Γ M M' A},
{{ Γ, ℕ, A ⊨ M ≈ M' : A[Wk∘Wk,,succ(#1)] }} ->
exists env_rel (_ : {{ EF Γ, ℕ, A ≈ Γ, ℕ, A ∈ per_ctx_env ↘ env_rel }}) i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists elem_rel, rel_typ i A d{{{ ρ ↯ ↯ ↦ succ ^(ρ 1) }}} A d{{{ ρ' ↯ ↯ ↦ succ ^(ρ' 1) }}} elem_rel /\ rel_exp M ρ M' ρ' elem_rel.
Proof.
intros * [env_relΓℕA].
destruct_conjs.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓℕA).
destruct_by_head rel_typ.
invert_rel_typ_body.
mauto.
Qed.
Lemma rel_exp_of_sub_id_N : forall {Γ M M' N A},
{{ Γ ⊨ N : ℕ }} ->
(exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}) i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists n n',
{{ ⟦ N ⟧ ρ ↘ n }} /\
{{ ⟦ N ⟧ ρ' ↘ n' }} /\
exists elem_rel, rel_typ i A d{{{ ρ ↦ n }}} A d{{{ ρ' ↦ n' }}} elem_rel /\ rel_exp M ρ M' ρ' elem_rel) ->
{{ Γ ⊨ M ≈ M' : A[Id,,N] }}.
Proof.
intros * []%rel_exp_of_nat_inversion [env_relΓ].
destruct_conjs.
pose env_relΓ.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
eexists; split; mauto.
econstructor; mauto.
Qed.
Ltac eexists_rel_exp_of_sub_id_N :=
apply rel_exp_of_sub_id_N; [eassumption |];
eexists_rel_exp.
Lemma eval_natrec_sub_neut : forall {Γ env_relΓ σ Δ env_relΔ MZ MZ' MS MS' A A' i m m'},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ DF Δ ≈ Δ ∈ per_ctx_env ↘ env_relΔ }} ->
{{ Δ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Δ ⊨ MZ ≈ MZ' : A[Id,,zero] }} ->
{{ Δ, ℕ, A ⊨ MS ≈ MS' : A[Wk∘Wk,,succ(#1)] }} ->
{{ Dom m ≈ m' ∈ per_bot }} ->
(forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}) ρσ ρ'σ' mz mz',
{{ ⟦ σ ⟧s ρ ↘ ρσ }} ->
{{ ⟦ σ ⟧s ρ' ↘ ρ'σ' }} ->
{{ Dom ρσ ≈ ρ'σ' ∈ env_relΔ }} ->
{{ ⟦ MZ ⟧ ρσ ↘ mz }} ->
{{ ⟦ MZ' ⟧ ρ'σ' ↘ mz' }} ->
{{ Dom rec m under ρσ return A | zero -> mz | succ -> MS end ≈ rec m' under ρ' return A'[q σ] | zero -> mz' | succ -> MS'[q (q σ)] end ∈ per_bot }}).
Proof.
intros * equiv_Γ_Γ equiv_Δ_Δ
[env_relΔℕ]%rel_exp_of_typ_inversion1
[]%rel_exp_of_sub_id_zero_inversion
[env_relΔℕA]%rel_exp_of_sub_wkwk_succ_var1_inversion
equiv_m_m'.
destruct_conjs.
pose env_relΔℕA.
pose env_relΔℕ.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΔℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΔℕ.
handle_per_ctx_env_irrel.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
destruct_conjs.
functional_eval_rewrite_clear.
match goal with
| _: {{ ⟦ σ ⟧s ρ ↘ ^?ρ1 }},
_: {{ ⟦ σ ⟧s ρ' ↘ ^?ρ2 }} |- _ =>
rename ρ1 into ρσ;
rename ρ2 into ρ'σ
end.
intro s.
assert {{ Dom ⇑! ℕ s ≈ ⇑! ℕ s ∈ per_nat }} by mauto.
assert {{ Dom ρσ ↦ ⇑! ℕ s ≈ ρ'σ ↦ ⇑! ℕ s ∈ env_relΔℕ }} as HinΔℕs by (apply_relation_equivalence; mauto).
(on_all_hyp: fun H => destruct (H _ _ HinΔℕs)).
assert {{ Dom succ (⇑! ℕ s) ≈ succ (⇑! ℕ s) ∈ per_nat }} by mauto.
assert {{ Dom ρσ ↦ succ (⇑! ℕ s) ≈ ρ'σ ↦ succ (⇑! ℕ s) ∈ env_relΔℕ }} as HinΔℕsuccs by (apply_relation_equivalence; mauto).
(on_all_hyp: fun H => destruct (H _ _ HinΔℕsuccs)).
assert {{ Dom ρσ ↦ ⇑! ℕ s ≈ ρ'σ ↦ ⇑! ℕ s ∈ env_relΔℕ }} as HinΔℕs' by (apply_relation_equivalence; mauto).
assert {{ Dom ρσ ↦ succ (⇑! ℕ s) ≈ ρ'σ ↦ succ (⇑! ℕ s) ∈ env_relΔℕ }} as HinΔℕsuccs' by (apply_relation_equivalence; mauto).
assert {{ Dom zero ≈ zero ∈ per_nat }} by econstructor.
assert {{ Dom ρσ ↦ zero ≈ ρ'σ ↦ zero ∈ env_relΔℕ }} as HinΔℕz by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => destruct (H _ _ HinΔℕs')).
(on_all_hyp: fun H => destruct (H _ _ HinΔℕsuccs')).
(on_all_hyp: fun H => destruct (H _ _ HinΔℕz)).
destruct_by_head per_univ.
destruct_conjs.
handle_per_univ_elem_irrel.
rename a' into a''.
rename m'0 into a'.
rename a1 into asucc.
rename m'1 into asucc'.
assert {{ Dom ρσ ↦ ⇑! ℕ s ↦ ⇑! a (S s) ≈ ρ'σ ↦ ⇑! ℕ s ↦ ⇑! a' (S s) ∈ env_relΔℕA }} as HinΔℕA.
{
apply_relation_equivalence; eexists; eauto.
unfold drop_env.
repeat change (fun n => d{{{ ^?ρσ ↦ ^?x ↦ ^?y }}} (S n)) with (fun n => d{{{ ρ ↦ x }}} n).
repeat change (d{{{ ^?ρσ ↦ ^?x ↦ ^?y }}} 0) with y.
eapply per_bot_then_per_elem; mauto.
}
apply_relation_equivalence.
(on_all_hyp: fun H => destruct (H _ _ HinΔℕA)).
destruct_conjs.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
destruct_by_head rel_exp.
(on_all_hyp: fun H => edestruct (per_univ_then_per_top_typ H (S s)) as [? []]).
functional_read_rewrite_clear.
(on_all_hyp: fun H => unshelve epose proof (per_elem_then_per_top H _ s) as [? []]; shelve_unifiable; [eassumption |]).
(on_all_hyp: fun H => unshelve epose proof (per_elem_then_per_top H _ (S (S s))) as [? []]; shelve_unifiable; [eassumption |]).
functional_read_rewrite_clear.
destruct (equiv_m_m' s) as [? []].
do 3 econstructor; mauto.
repeat econstructor; mauto.
Qed.
Corollary eval_natrec_neut : forall {Γ env_relΓ MZ MZ' MS MS' A A' i m m'},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ Γ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Γ ⊨ MZ ≈ MZ' : A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊨ MS ≈ MS' : A[Wk∘Wk,,succ(#1)] }} ->
{{ Dom m ≈ m' ∈ per_bot }} ->
(forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}) mz mz',
{{ ⟦ MZ ⟧ ρ ↘ mz }} ->
{{ ⟦ MZ' ⟧ ρ' ↘ mz' }} ->
{{ Dom rec m under ρ return A | zero -> mz | succ -> MS end ≈ rec m' under ρ' return A' | zero -> mz' | succ -> MS' end ∈ per_bot }}).
Proof.
intros.
assert {{ Dom rec m under ρ return A | zero -> mz | succ -> MS end ≈ rec m' under ρ' return A'[q Id] | zero -> mz' | succ -> MS'[q (q Id)] end ∈ per_bot }} by (mauto using eval_natrec_sub_neut).
etransitivity; [eassumption |].
intros s.
match_by_head per_bot ltac:(fun H => specialize (H s) as [? []]).
eexists; split; [eassumption |].
dir_inversion_by_head read_ne; subst.
simplify_evals.
mauto.
Qed.
Lemma eval_natrec_rel : forall {Γ env_relΓ MZ MZ' MS MS' A A' i m m'},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ Γ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Γ ⊨ MZ ≈ MZ' : A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊨ MS ≈ MS' : A[Wk∘Wk,,succ(#1)] }} ->
{{ Dom m ≈ m' ∈ per_nat }} ->
(forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}),
forall elem_rel,
rel_typ i A d{{{ ρ ↦ m }}} A d{{{ ρ' ↦ m' }}} elem_rel ->
exists r r',
{{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ r }} /\
{{ rec m' ⟦return A' | zero -> MZ' | succ -> MS' end⟧ ρ' ↘ r' }} /\
{{ Dom r ≈ r' ∈ elem_rel }}).
Proof.
intros * equiv_Γ_Γ HA HMZ HMS equiv_m_m'.
induction equiv_m_m'; intros;
apply rel_exp_of_typ_inversion1 in HA as [env_relΓℕ];
apply rel_exp_of_sub_id_zero_inversion in HMZ as [];
destruct_conjs;
pose env_relΓℕ.
- handle_per_ctx_env_irrel.
invert_per_ctx_envs.
handle_per_ctx_env_irrel.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
destruct_by_head rel_exp.
handle_per_univ_elem_irrel.
do 2 eexists; repeat split; mauto.
- assert {{ Γ, ℕ ⊨ A ≈ A : Type@i }} as []%rel_exp_of_typ_inversion1 by (etransitivity; mauto).
apply rel_exp_of_sub_wkwk_succ_var1_inversion in HMS as [env_relΓℕA].
destruct_conjs.
pose env_relΓℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΓℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΓℕ.
handle_per_ctx_env_irrel.
(on_all_hyp_rev: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
match goal with
| _: env_relΓ ρ ?ρ0 |- _ =>
rename ρ0 into ρ'
end.
assert {{ Dom ρ ↦ m ≈ ρ' ↦ m' ∈ env_relΓℕ }} by (apply_relation_equivalence; mauto).
(on_all_hyp: destruct_rel_by_assumption env_relΓℕ).
assert {{ Dom ρ ↦ m ≈ ρ' ↦ m' ∈ env_relΓℕ }} as HinΓℕ by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΓℕ)).
destruct_by_head per_univ.
unshelve epose proof (IHequiv_m_m' _ _ equiv_ρ_ρ' _ _) as [? [? [? []]]]; shelve_unifiable; [solve [mauto] |].
handle_per_univ_elem_irrel.
match goal with
| _: {{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ ^?r0 }},
_: {{ rec m' ⟦return A' | zero -> MZ' | succ -> MS' end⟧ ρ' ↘ ^?r0' }} |- _ =>
rename r0 into rm;
rename r0' into rm'
end.
assert {{ Dom ρ ↦ m ↦ rm ≈ ρ' ↦ m' ↦ rm' ∈ env_relΓℕA }} as HinΓℕA by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΓℕA)).
destruct_conjs.
destruct_by_head rel_typ.
destruct_by_head rel_exp.
handle_per_univ_elem_irrel.
do 2 eexists; mauto.
- match goal with
| _: per_bot m ?n |- _ =>
rename n into m'
end.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΓℕ.
handle_per_ctx_env_irrel.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp_rev: destruct_rel_by_assumption env_relΓ).
invert_rel_typ_body.
match goal with
| _: env_relΓ ρ ?ρ0 |- _ =>
rename ρ0 into ρ'
end.
assert {{ Dom ⇑ a m ≈ ⇑ a' m' ∈ per_nat }} by (econstructor; eassumption).
assert {{ Dom ρ ↦ ⇑ a m ≈ ρ' ↦ ⇑ a' m' ∈ env_relΓℕ }} as HinΓℕ by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΓℕ)).
destruct_by_head per_univ.
destruct_by_head rel_exp.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
do 2 eexists.
repeat split; only 1-2: mauto.
eapply per_bot_then_per_elem; [eassumption |].
eapply eval_natrec_neut; eauto.
+ assert {{ EF Γ, ℕ ≈ Γ, ℕ ∈ per_ctx_env ↘ env_relΓℕ }} by (per_ctx_env_econstructor; eauto).
eexists_rel_exp_of_typ.
apply_relation_equivalence.
eauto.
+ eexists_rel_exp_of_sub_id_zero.
eauto.
Qed.
Lemma rel_exp_natrec_cong_rel_typ: forall {Γ A A' i M M' env_relΓ},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ Γ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Γ ⊨ M ≈ M' : ℕ }} ->
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}) n n',
{{ ⟦ M ⟧ ρ ↘ n }} ->
{{ ⟦ M' ⟧ ρ' ↘ n' }} ->
exists elem_rel,
rel_typ i A d{{{ ρ ↦ n }}} A d{{{ ρ' ↦ n' }}} elem_rel.
Proof.
intros.
assert {{ ⊨ Γ }} by (eexists; eauto).
assert {{ Γ ⊨ ℕ : Type@0 }} by mauto.
assert {{ Γ ⊨ M ≈ M' : ℕ[Id] }} by mauto 4.
assert {{ Γ ⊨s Id,,M ≈ Id,,M' : Γ, ℕ }} by mauto.
assert {{ Γ ⊨s Id,,M : Γ, ℕ }} by mauto.
assert {{ Γ ⊨ A[Id,,M] ≈ A[Id,,M'] : Type@i[Id,,M] }} by mauto.
assert {{ Γ ⊨ A[Id,,M] ≈ A[Id,,M'] : Type@i }} as []%rel_exp_of_typ_inversion1 by mauto.
destruct_conjs.
handle_per_ctx_env_irrel.
(on_all_hyp_rev: destruct_rel_by_assumption env_relΓ).
destruct_by_head per_univ.
invert_rel_typ_body.
apply rel_exp_implies_rel_typ.
econstructor; mauto.
Qed.
Lemma rel_exp_natrec_cong : forall {Γ MZ MZ' MS MS' A A' i M M'},
{{ Γ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Γ ⊨ MZ ≈ MZ' : A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊨ MS ≈ MS' : A[Wk∘Wk,,succ(#1)] }} ->
{{ Γ ⊨ M ≈ M' : ℕ }} ->
{{ Γ ⊨ rec M return A | zero -> MZ | succ -> MS end ≈ rec M' return A' | zero -> MZ' | succ -> MS' end : A[Id,,M] }}.
Proof.
intros * HAA' ? ? [env_relΓ]%rel_exp_of_nat_inversion.
destruct_conjs.
pose env_relΓ.
assert {{ Γ ⊨ M : ℕ }} by (unfold valid_exp_under_ctx; etransitivity; [| symmetry]; eauto using rel_exp_of_nat).
assert {{ Γ ⊨ M : ℕ }} as []%rel_exp_of_nat_inversion by eassumption.
destruct_conjs.
handle_per_ctx_env_irrel.
eexists_rel_exp_of_sub_id_N.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
functional_eval_rewrite_clear.
assert (exists elem_rel, rel_typ i A d{{{ ρ ↦ m }}} A d{{{ ρ' ↦ m' }}} elem_rel) as [elem_rel]
by mauto using rel_exp_natrec_cong_rel_typ.
assert (exists elem_rel, rel_typ i A d{{{ ρ ↦ m }}} A d{{{ ρ' ↦ m'0 }}} elem_rel) as []
by mauto using rel_exp_natrec_cong_rel_typ.
do 2 eexists.
repeat split; [eassumption | eassumption |].
eexists.
split; [eassumption |].
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
assert (exists r r',
{{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ r }} /\
{{ rec m'0 ⟦return A' | zero -> MZ' | succ -> MS' end⟧ ρ' ↘ r' }} /\
{{ Dom r ≈ r' ∈ elem_rel }})
by mauto using eval_natrec_rel.
destruct_conjs.
econstructor; only 1-2: econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_natrec_cong : mctt.
Lemma eval_natrec_sub_rel : forall {Γ env_relΓ σ Δ env_relΔ MZ MZ' MS MS' A A' i m m'},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ DF Δ ≈ Δ ∈ per_ctx_env ↘ env_relΔ }} ->
{{ Δ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Δ ⊨ MZ ≈ MZ' : A[Id,,zero] }} ->
{{ Δ, ℕ, A ⊨ MS ≈ MS' : A[Wk∘Wk,,succ(#1)] }} ->
{{ Dom m ≈ m' ∈ per_nat }} ->
(forall ρ ρ'
(equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }})
o o' elem_rel,
{{ ⟦ σ ⟧s ρ ↘ o }} ->
{{ ⟦ σ ⟧s ρ' ↘ o' }} ->
{{ Dom o ≈ o' ∈ env_relΔ }} ->
rel_typ i A d{{{ o ↦ m }}} A d{{{ o' ↦ m' }}} elem_rel ->
exists r r',
{{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ o ↘ r }} /\
{{ rec m' ⟦return A'[q σ] | zero -> MZ'[σ] | succ -> MS'[q (q σ)] end⟧ ρ' ↘ r' }} /\
{{ Dom r ≈ r' ∈ elem_rel }}).
Proof.
intros * equiv_Γ_Γ equiv_Δ_Δ HA HMZ HMS equiv_m_m'.
induction equiv_m_m'; intros;
apply rel_exp_of_typ_inversion1 in HA as [env_relΔℕ];
apply rel_exp_of_sub_id_zero_inversion in HMZ as [];
destruct_conjs;
pose env_relΔℕ.
- handle_per_ctx_env_irrel.
invert_per_ctx_envs.
handle_per_ctx_env_irrel.
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
destruct_by_head rel_typ.
destruct_by_head rel_exp.
handle_per_univ_elem_irrel.
do 2 eexists; repeat split; only 1-2: econstructor; mauto.
- match goal with
| _: per_nat m ?n |- _ =>
rename n into m'
end.
assert {{ Δ, ℕ ⊨ A ≈ A : Type@i }} as []%rel_exp_of_typ_inversion1 by (etransitivity; mauto).
apply rel_exp_of_sub_wkwk_succ_var1_inversion in HMS as [env_relΔℕA].
destruct_conjs.
pose env_relΔℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΔℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΔℕ.
handle_per_ctx_env_irrel.
(on_all_hyp_rev: destruct_rel_by_assumption env_relΔ).
destruct_by_head rel_typ.
invert_rel_typ_body.
match goal with
| _: {{ ⟦ σ ⟧s ρ ↘ ^?ρ1 }},
_: {{ ⟦ σ ⟧s ρ' ↘ ^?ρ2 }} |- _ =>
rename ρ1 into ρσ;
rename ρ2 into ρ'σ
end.
assert {{ Dom ρσ ↦ m ≈ ρ'σ ↦ m' ∈ env_relΔℕ }} by (apply_relation_equivalence; mauto).
(on_all_hyp: destruct_rel_by_assumption env_relΔℕ).
assert {{ Dom ρσ ↦ m ≈ ρ'σ ↦ m' ∈ env_relΔℕ }} as HinΔℕ by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΔℕ)).
destruct_by_head per_univ.
unshelve epose proof (IHequiv_m_m' _ _ equiv_ρ_ρ' _ _ _ _ _ _ _) as [? [? [? []]]]; shelve_unifiable; only 4: solve [mauto]; eauto.
handle_per_univ_elem_irrel.
match goal with
| _: {{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ^_ ↘ ^?r0 }},
_: {{ rec m' ⟦return A'[q σ] | zero -> MZ'[σ] | succ -> MS'[q (q σ)] end⟧ ^_ ↘ ^?r0' }} |- _ =>
rename r0 into rm;
rename r0' into rm'
end.
assert {{ Dom ρσ ↦ m ↦ rm ≈ ρ'σ ↦ m' ↦ rm' ∈ env_relΔℕA }} as HinΔℕA by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΔℕA)).
destruct_conjs.
destruct_by_head rel_typ.
destruct_by_head rel_exp.
handle_per_univ_elem_irrel.
do 2 eexists; repeat split; only 1-2: repeat econstructor; mauto.
- match goal with
| _: per_bot m ?n |- _ =>
rename n into m'
end.
handle_per_ctx_env_irrel.
invert_per_ctx_envs.
handle_per_ctx_env_irrel.
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
(on_all_hyp_rev: destruct_rel_by_assumption env_relΔ).
invert_rel_typ_body.
match goal with
| _: {{ ⟦ σ ⟧s ρ ↘ ^?ρ1 }},
_: {{ ⟦ σ ⟧s ρ' ↘ ^?ρ2 }} |- _ =>
rename ρ1 into ρσ;
rename ρ2 into ρ'σ
end.
assert {{ Dom ⇑ a m ≈ ⇑ a' m' ∈ per_nat }} by (econstructor; eassumption).
assert {{ Dom ρσ ↦ ⇑ a m ≈ ρ'σ ↦ ⇑ a' m' ∈ env_relΔℕ }} as HinΔℕ by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΔℕ)).
destruct_by_head per_univ.
destruct_by_head rel_exp.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
do 2 eexists.
repeat split; only 1-2: repeat econstructor; mauto.
eapply per_bot_then_per_elem; [eassumption |].
eapply eval_natrec_sub_neut; only 7: eauto; eauto.
+ assert {{ EF Δ, ℕ ≈ Δ, ℕ ∈ per_ctx_env ↘ env_relΔℕ }} by (per_ctx_env_econstructor; eauto).
eexists_rel_exp_of_typ.
apply_relation_equivalence.
eauto.
+ eexists_rel_exp_of_sub_id_zero.
eauto.
Qed.
Lemma rel_exp_natrec_sub_rel_typ: forall {Γ σ Δ A i M env_relΓ},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ Γ ⊨s σ : Δ }} ->
{{ Δ, ℕ ⊨ A : Type@i }} ->
{{ Δ ⊨ M : ℕ }} ->
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}),
exists elem_rel,
rel_typ i {{{ A[σ,,M[σ]] }}} ρ {{{ A[σ,,M[σ]] }}} ρ' elem_rel.
Proof.
intros.
assert {{ ⊨ Γ }} by (eexists; eauto).
assert {{ ⊨ Δ }} by (eapply presup_rel_sub; eauto).
assert {{ Γ ⊨ M[σ] : ℕ[σ] }} by mauto.
assert {{ Δ ⊨ ℕ : Type@0 }} by mauto.
assert {{ Γ ⊨s σ,,M[σ] : Δ, ℕ }} by mauto.
assert {{ Γ ⊨ A[σ,,M[σ]] : Type@i[σ,,M[σ]] }} by mauto.
assert {{ Γ ⊨ A[σ,,M[σ]] : Type@i }} as []%rel_exp_of_typ_inversion1 by mauto.
destruct_conjs.
handle_per_ctx_env_irrel.
mauto.
Qed.
Lemma rel_exp_natrec_sub : forall {Γ σ Δ MZ MS A i M},
{{ Γ ⊨s σ : Δ }} ->
{{ Δ, ℕ ⊨ A : Type@i }} ->
{{ Δ ⊨ MZ : A[Id,,zero] }} ->
{{ Δ, ℕ, A ⊨ MS : A[Wk∘Wk,,succ(#1)] }} ->
{{ Δ ⊨ M : ℕ }} ->
{{ Γ ⊨ rec M return A | zero -> MZ | succ -> MS end[σ] ≈ rec M[σ] return A[q σ] | zero -> MZ[σ] | succ -> MS[q (q σ)] end : A[σ,,M[σ]] }}.
Proof.
intros * [env_relΓ [? [env_relΔ]]] HA ? ? []%rel_exp_of_nat_inversion.
destruct_conjs.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
assert (exists elem_rel, rel_typ i {{{ A[σ,,M[σ]] }}} ρ {{{ A[σ,,M[σ]] }}} ρ' elem_rel) as [elem_rel]
by (eapply rel_exp_natrec_sub_rel_typ; only 5: eassumption; mauto; eexists; mauto).
eexists.
split; [eassumption |].
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
destruct_by_head rel_typ.
invert_rel_typ_body.
match goal with
| _: {{ ⟦ σ ⟧s ^?ρ0 ↘ ^?ρσ0 }},
_: {{ ⟦ A ⟧ ρσ ↦ ^?m0 ↘ ^?a0 }},
_: {{ ⟦ A ⟧ ^?ρσ0 ↦ ^?m0' ↘ ^?a0' }} |- _ =>
rename ρ0 into ρ';
rename ρσ0 into ρ'σ;
rename a0 into a;
rename m0 into m;
rename a0' into a';
rename m0' into m'
end.
enough (exists r r',
{{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ρσ ↘ r }} /\
{{ rec m' ⟦return A[q σ] | zero -> MZ[σ] | succ -> MS[q (q σ)] end⟧ ρ' ↘ r' }} /\
{{ Dom r ≈ r' ∈ elem_rel }})
by (destruct_conjs; econstructor; mauto).
mauto 4 using eval_natrec_sub_rel.
Qed.
#[export]
Hint Resolve rel_exp_natrec_sub : mctt.
Lemma rel_exp_nat_beta_zero : forall {Γ MZ MS A},
{{ Γ ⊨ MZ : A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊨ MS : A[Wk∘Wk,,succ(#1)] }} ->
{{ Γ ⊨ rec zero return A | zero -> MZ | succ -> MS end ≈ MZ : A[Id,,zero] }}.
Proof.
intros * [env_relΓ]%rel_exp_of_sub_id_zero_inversion [env_relΓℕA]%rel_exp_of_sub_wkwk_succ_var1_inversion.
destruct_conjs.
assert {{ ⊨ Γ, ℕ }} as [env_relΓℕ] by (invert_per_ctx_envs_of env_relΓℕA; eexists; eauto).
destruct_conjs.
pose env_relΓℕ.
pose env_relΓℕA.
invert_per_ctx_envs_of env_relΓℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΓℕ.
eexists_rel_exp_of_sub_id_zero.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
match goal with
| _: env_relΓ ρ ?ρ0 |- _ =>
rename ρ0 into ρ'
end.
assert {{ Dom zero ≈ zero ∈ per_nat }} by econstructor.
assert {{ Dom ρ ↦ zero ≈ ρ' ↦ zero ∈ env_relΓℕ }} by (apply_relation_equivalence; mauto 3).
(on_all_hyp: destruct_rel_by_assumption env_relΓℕ).
handle_per_univ_elem_irrel.
eexists.
split; econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_nat_beta_zero : mctt.
Lemma rel_exp_nat_beta_succ_rel_typ : forall {Γ env_relΓ A i M},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ Γ, ℕ ⊨ A : Type@i }} ->
{{ Γ ⊨ M : ℕ }} ->
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}),
exists elem_rel,
rel_typ i {{{ A[Id,,succ M] }}} ρ {{{ A[Id,,succ M] }}} ρ' elem_rel.
Proof.
intros.
assert {{ ⊨ Γ }} by (eexists; eauto).
assert {{ Γ ⊨ ℕ : Type@0 }} by mauto.
assert {{ Γ ⊨ ℕ ≈ ℕ[Id] : Type@0 }} by mauto.
assert {{ Γ ⊨ succ M : ℕ[Id] }} by mauto.
assert {{ Γ ⊨s Id,,succ M : Γ, ℕ }} by mauto.
assert {{ Γ ⊨ A[Id,,succ M] : Type@i }} as []%rel_exp_of_typ_inversion1 by mauto.
destruct_conjs.
handle_per_ctx_env_irrel.
(on_all_hyp_rev: destruct_rel_by_assumption env_relΓ).
invert_rel_typ_body.
mauto.
Qed.
Lemma rel_exp_nat_beta_succ : forall {Γ MZ MS A i M},
{{ Γ, ℕ ⊨ A : Type@i }} ->
{{ Γ ⊨ MZ : A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊨ MS : A[Wk∘Wk,,succ(#1)] }} ->
{{ Γ ⊨ M : ℕ }} ->
{{ Γ ⊨ rec succ M return A | zero -> MZ | succ -> MS end ≈ MS[Id,,M,,rec M return A | zero -> MZ | succ -> MS end] : A[Id,,succ M] }}.
Proof.
intros * HA ? ? [env_relΓ]%rel_exp_of_nat_inversion.
destruct_conjs.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
assert (exists elem_rel,
rel_typ i {{{ A[Id,,succ M] }}} ρ {{{ A[Id,,succ M] }}} ρ' elem_rel) as [elem_rel]
by (eapply rel_exp_nat_beta_succ_rel_typ; mauto).
eexists; split; [eassumption |].
destruct_by_head rel_typ.
invert_rel_typ_body.
match goal with
| _: env_relΓ ρ ?ρ0 |- _ =>
rename ρ0 into ρ'
end.
assert (exists r r',
{{ rec succ m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ r }} /\
{{ rec succ m' ⟦return A | zero -> MZ | succ -> MS end⟧ ρ' ↘ r' }} /\
{{ Dom r ≈ r' ∈ elem_rel }})
by (eapply eval_natrec_rel; mauto).
destruct_conjs.
dir_inversion_by_head eval_natrec; subst.
econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_nat_beta_succ : mctt.
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core.Completeness Require Import LogicalRelation SubstitutionCases TermStructureCases UniverseCases.
From Mctt.Core.Semantic Require Import Realizability.
Import Domain_Notations.
Lemma rel_exp_of_nat_inversion : forall {Γ M M'},
{{ Γ ⊨ M ≈ M' : ℕ }} ->
exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}),
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
rel_exp M ρ M' ρ' per_nat.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists.
eexists; [eassumption |].
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
eassumption.
Qed.
Lemma rel_exp_of_nat : forall {Γ M M'},
(exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}),
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
rel_exp M ρ M' ρ' per_nat) ->
{{ Γ ⊨ M ≈ M' : ℕ }}.
Proof.
intros * [env_relΓ].
destruct_conjs.
unshelve eexists_rel_exp; [constructor |].
intros.
eexists; split; mauto.
econstructor; mauto.
per_univ_elem_econstructor; mauto.
reflexivity.
Qed.
#[export]
Hint Resolve rel_exp_of_nat : mctt.
Ltac eexists_rel_exp_of_nat :=
apply rel_exp_of_nat;
eexists;
eexists; [eassumption |].
Lemma valid_exp_nat : forall {Γ i},
{{ ⊨ Γ }} ->
{{ Γ ⊨ ℕ : Type@i }}.
Proof.
intros * [env_relΓ].
eexists_rel_exp_of_typ.
intros.
econstructor; mauto.
eexists.
per_univ_elem_econstructor.
reflexivity.
Qed.
#[export]
Hint Resolve valid_exp_nat : mctt.
Lemma rel_exp_nat_sub : forall {Γ σ i Δ},
{{ Γ ⊨s σ : Δ }} ->
{{ Γ ⊨ ℕ[σ] ≈ ℕ : Type@i }}.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_exp_of_typ.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor; mauto.
eexists.
per_univ_elem_econstructor.
reflexivity.
Qed.
#[export]
Hint Resolve rel_exp_nat_sub : mctt.
Lemma valid_exp_zero : forall {Γ},
{{ ⊨ Γ }} ->
{{ Γ ⊨ zero : ℕ }}.
Proof.
intros * [env_relΓ].
eexists_rel_exp_of_nat.
intros.
econstructor; mauto.
Qed.
#[export]
Hint Resolve valid_exp_zero : mctt.
Lemma rel_exp_zero_sub : forall {Γ σ Δ},
{{ Γ ⊨s σ : Δ }} ->
{{ Γ ⊨ zero[σ] ≈ zero : ℕ }}.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_exp_of_nat.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_zero_sub : mctt.
Lemma rel_exp_succ_sub : forall {Γ σ Δ M},
{{ Γ ⊨s σ : Δ }} ->
{{ Δ ⊨ M : ℕ }} ->
{{ Γ ⊨ (succ M)[σ] ≈ succ (M[σ]) : ℕ }}.
Proof.
intros * [env_relΓ] [env_relΔ]%rel_exp_of_nat_inversion.
destruct_conjs.
pose env_relΔ.
handle_per_ctx_env_irrel.
eexists_rel_exp_of_nat.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_succ_sub : mctt.
Lemma rel_exp_succ_cong : forall {Γ M M'},
{{ Γ ⊨ M ≈ M' : ℕ }} ->
{{ Γ ⊨ succ M ≈ succ M' : ℕ }}.
Proof.
intros * [env_relΓ]%rel_exp_of_nat_inversion.
destruct_conjs.
eexists_rel_exp_of_nat.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_succ_cong : mctt.
Lemma rel_exp_of_sub_id_zero_inversion : forall {Γ M M' A},
{{ Γ ⊨ M ≈ M' : A[Id,,zero] }} ->
exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}) i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists elem_rel, rel_typ i A d{{{ ρ ↦ zero }}} A d{{{ ρ' ↦ zero }}} elem_rel /\ rel_exp M ρ M' ρ' elem_rel.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
mauto.
Qed.
Lemma rel_exp_of_sub_id_zero : forall {Γ M M' A},
(exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}) i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists elem_rel, rel_typ i A d{{{ ρ ↦ zero }}} A d{{{ ρ' ↦ zero }}} elem_rel /\ rel_exp M ρ M' ρ' elem_rel) ->
{{ Γ ⊨ M ≈ M' : A[Id,,zero] }}.
Proof.
intros * [env_relΓ].
destruct_conjs.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
destruct_by_head rel_exp.
eexists.
split; econstructor; mauto.
Qed.
Ltac eexists_rel_exp_of_sub_id_zero :=
apply rel_exp_of_sub_id_zero;
eexists_rel_exp.
Lemma rel_exp_of_sub_wkwk_succ_var1_inversion : forall {Γ M M' A},
{{ Γ, ℕ, A ⊨ M ≈ M' : A[Wk∘Wk,,succ(#1)] }} ->
exists env_rel (_ : {{ EF Γ, ℕ, A ≈ Γ, ℕ, A ∈ per_ctx_env ↘ env_rel }}) i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists elem_rel, rel_typ i A d{{{ ρ ↯ ↯ ↦ succ ^(ρ 1) }}} A d{{{ ρ' ↯ ↯ ↦ succ ^(ρ' 1) }}} elem_rel /\ rel_exp M ρ M' ρ' elem_rel.
Proof.
intros * [env_relΓℕA].
destruct_conjs.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓℕA).
destruct_by_head rel_typ.
invert_rel_typ_body.
mauto.
Qed.
Lemma rel_exp_of_sub_id_N : forall {Γ M M' N A},
{{ Γ ⊨ N : ℕ }} ->
(exists env_rel (_ : {{ EF Γ ≈ Γ ∈ per_ctx_env ↘ env_rel }}) i,
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_rel }}),
exists n n',
{{ ⟦ N ⟧ ρ ↘ n }} /\
{{ ⟦ N ⟧ ρ' ↘ n' }} /\
exists elem_rel, rel_typ i A d{{{ ρ ↦ n }}} A d{{{ ρ' ↦ n' }}} elem_rel /\ rel_exp M ρ M' ρ' elem_rel) ->
{{ Γ ⊨ M ≈ M' : A[Id,,N] }}.
Proof.
intros * []%rel_exp_of_nat_inversion [env_relΓ].
destruct_conjs.
pose env_relΓ.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
eexists; split; mauto.
econstructor; mauto.
Qed.
Ltac eexists_rel_exp_of_sub_id_N :=
apply rel_exp_of_sub_id_N; [eassumption |];
eexists_rel_exp.
Lemma eval_natrec_sub_neut : forall {Γ env_relΓ σ Δ env_relΔ MZ MZ' MS MS' A A' i m m'},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ DF Δ ≈ Δ ∈ per_ctx_env ↘ env_relΔ }} ->
{{ Δ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Δ ⊨ MZ ≈ MZ' : A[Id,,zero] }} ->
{{ Δ, ℕ, A ⊨ MS ≈ MS' : A[Wk∘Wk,,succ(#1)] }} ->
{{ Dom m ≈ m' ∈ per_bot }} ->
(forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}) ρσ ρ'σ' mz mz',
{{ ⟦ σ ⟧s ρ ↘ ρσ }} ->
{{ ⟦ σ ⟧s ρ' ↘ ρ'σ' }} ->
{{ Dom ρσ ≈ ρ'σ' ∈ env_relΔ }} ->
{{ ⟦ MZ ⟧ ρσ ↘ mz }} ->
{{ ⟦ MZ' ⟧ ρ'σ' ↘ mz' }} ->
{{ Dom rec m under ρσ return A | zero -> mz | succ -> MS end ≈ rec m' under ρ' return A'[q σ] | zero -> mz' | succ -> MS'[q (q σ)] end ∈ per_bot }}).
Proof.
intros * equiv_Γ_Γ equiv_Δ_Δ
[env_relΔℕ]%rel_exp_of_typ_inversion1
[]%rel_exp_of_sub_id_zero_inversion
[env_relΔℕA]%rel_exp_of_sub_wkwk_succ_var1_inversion
equiv_m_m'.
destruct_conjs.
pose env_relΔℕA.
pose env_relΔℕ.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΔℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΔℕ.
handle_per_ctx_env_irrel.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
destruct_conjs.
functional_eval_rewrite_clear.
match goal with
| _: {{ ⟦ σ ⟧s ρ ↘ ^?ρ1 }},
_: {{ ⟦ σ ⟧s ρ' ↘ ^?ρ2 }} |- _ =>
rename ρ1 into ρσ;
rename ρ2 into ρ'σ
end.
intro s.
assert {{ Dom ⇑! ℕ s ≈ ⇑! ℕ s ∈ per_nat }} by mauto.
assert {{ Dom ρσ ↦ ⇑! ℕ s ≈ ρ'σ ↦ ⇑! ℕ s ∈ env_relΔℕ }} as HinΔℕs by (apply_relation_equivalence; mauto).
(on_all_hyp: fun H => destruct (H _ _ HinΔℕs)).
assert {{ Dom succ (⇑! ℕ s) ≈ succ (⇑! ℕ s) ∈ per_nat }} by mauto.
assert {{ Dom ρσ ↦ succ (⇑! ℕ s) ≈ ρ'σ ↦ succ (⇑! ℕ s) ∈ env_relΔℕ }} as HinΔℕsuccs by (apply_relation_equivalence; mauto).
(on_all_hyp: fun H => destruct (H _ _ HinΔℕsuccs)).
assert {{ Dom ρσ ↦ ⇑! ℕ s ≈ ρ'σ ↦ ⇑! ℕ s ∈ env_relΔℕ }} as HinΔℕs' by (apply_relation_equivalence; mauto).
assert {{ Dom ρσ ↦ succ (⇑! ℕ s) ≈ ρ'σ ↦ succ (⇑! ℕ s) ∈ env_relΔℕ }} as HinΔℕsuccs' by (apply_relation_equivalence; mauto).
assert {{ Dom zero ≈ zero ∈ per_nat }} by econstructor.
assert {{ Dom ρσ ↦ zero ≈ ρ'σ ↦ zero ∈ env_relΔℕ }} as HinΔℕz by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => destruct (H _ _ HinΔℕs')).
(on_all_hyp: fun H => destruct (H _ _ HinΔℕsuccs')).
(on_all_hyp: fun H => destruct (H _ _ HinΔℕz)).
destruct_by_head per_univ.
destruct_conjs.
handle_per_univ_elem_irrel.
rename a' into a''.
rename m'0 into a'.
rename a1 into asucc.
rename m'1 into asucc'.
assert {{ Dom ρσ ↦ ⇑! ℕ s ↦ ⇑! a (S s) ≈ ρ'σ ↦ ⇑! ℕ s ↦ ⇑! a' (S s) ∈ env_relΔℕA }} as HinΔℕA.
{
apply_relation_equivalence; eexists; eauto.
unfold drop_env.
repeat change (fun n => d{{{ ^?ρσ ↦ ^?x ↦ ^?y }}} (S n)) with (fun n => d{{{ ρ ↦ x }}} n).
repeat change (d{{{ ^?ρσ ↦ ^?x ↦ ^?y }}} 0) with y.
eapply per_bot_then_per_elem; mauto.
}
apply_relation_equivalence.
(on_all_hyp: fun H => destruct (H _ _ HinΔℕA)).
destruct_conjs.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
destruct_by_head rel_exp.
(on_all_hyp: fun H => edestruct (per_univ_then_per_top_typ H (S s)) as [? []]).
functional_read_rewrite_clear.
(on_all_hyp: fun H => unshelve epose proof (per_elem_then_per_top H _ s) as [? []]; shelve_unifiable; [eassumption |]).
(on_all_hyp: fun H => unshelve epose proof (per_elem_then_per_top H _ (S (S s))) as [? []]; shelve_unifiable; [eassumption |]).
functional_read_rewrite_clear.
destruct (equiv_m_m' s) as [? []].
do 3 econstructor; mauto.
repeat econstructor; mauto.
Qed.
Corollary eval_natrec_neut : forall {Γ env_relΓ MZ MZ' MS MS' A A' i m m'},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ Γ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Γ ⊨ MZ ≈ MZ' : A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊨ MS ≈ MS' : A[Wk∘Wk,,succ(#1)] }} ->
{{ Dom m ≈ m' ∈ per_bot }} ->
(forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}) mz mz',
{{ ⟦ MZ ⟧ ρ ↘ mz }} ->
{{ ⟦ MZ' ⟧ ρ' ↘ mz' }} ->
{{ Dom rec m under ρ return A | zero -> mz | succ -> MS end ≈ rec m' under ρ' return A' | zero -> mz' | succ -> MS' end ∈ per_bot }}).
Proof.
intros.
assert {{ Dom rec m under ρ return A | zero -> mz | succ -> MS end ≈ rec m' under ρ' return A'[q Id] | zero -> mz' | succ -> MS'[q (q Id)] end ∈ per_bot }} by (mauto using eval_natrec_sub_neut).
etransitivity; [eassumption |].
intros s.
match_by_head per_bot ltac:(fun H => specialize (H s) as [? []]).
eexists; split; [eassumption |].
dir_inversion_by_head read_ne; subst.
simplify_evals.
mauto.
Qed.
Lemma eval_natrec_rel : forall {Γ env_relΓ MZ MZ' MS MS' A A' i m m'},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ Γ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Γ ⊨ MZ ≈ MZ' : A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊨ MS ≈ MS' : A[Wk∘Wk,,succ(#1)] }} ->
{{ Dom m ≈ m' ∈ per_nat }} ->
(forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}),
forall elem_rel,
rel_typ i A d{{{ ρ ↦ m }}} A d{{{ ρ' ↦ m' }}} elem_rel ->
exists r r',
{{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ r }} /\
{{ rec m' ⟦return A' | zero -> MZ' | succ -> MS' end⟧ ρ' ↘ r' }} /\
{{ Dom r ≈ r' ∈ elem_rel }}).
Proof.
intros * equiv_Γ_Γ HA HMZ HMS equiv_m_m'.
induction equiv_m_m'; intros;
apply rel_exp_of_typ_inversion1 in HA as [env_relΓℕ];
apply rel_exp_of_sub_id_zero_inversion in HMZ as [];
destruct_conjs;
pose env_relΓℕ.
- handle_per_ctx_env_irrel.
invert_per_ctx_envs.
handle_per_ctx_env_irrel.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
destruct_by_head rel_exp.
handle_per_univ_elem_irrel.
do 2 eexists; repeat split; mauto.
- assert {{ Γ, ℕ ⊨ A ≈ A : Type@i }} as []%rel_exp_of_typ_inversion1 by (etransitivity; mauto).
apply rel_exp_of_sub_wkwk_succ_var1_inversion in HMS as [env_relΓℕA].
destruct_conjs.
pose env_relΓℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΓℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΓℕ.
handle_per_ctx_env_irrel.
(on_all_hyp_rev: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
match goal with
| _: env_relΓ ρ ?ρ0 |- _ =>
rename ρ0 into ρ'
end.
assert {{ Dom ρ ↦ m ≈ ρ' ↦ m' ∈ env_relΓℕ }} by (apply_relation_equivalence; mauto).
(on_all_hyp: destruct_rel_by_assumption env_relΓℕ).
assert {{ Dom ρ ↦ m ≈ ρ' ↦ m' ∈ env_relΓℕ }} as HinΓℕ by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΓℕ)).
destruct_by_head per_univ.
unshelve epose proof (IHequiv_m_m' _ _ equiv_ρ_ρ' _ _) as [? [? [? []]]]; shelve_unifiable; [solve [mauto] |].
handle_per_univ_elem_irrel.
match goal with
| _: {{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ ^?r0 }},
_: {{ rec m' ⟦return A' | zero -> MZ' | succ -> MS' end⟧ ρ' ↘ ^?r0' }} |- _ =>
rename r0 into rm;
rename r0' into rm'
end.
assert {{ Dom ρ ↦ m ↦ rm ≈ ρ' ↦ m' ↦ rm' ∈ env_relΓℕA }} as HinΓℕA by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΓℕA)).
destruct_conjs.
destruct_by_head rel_typ.
destruct_by_head rel_exp.
handle_per_univ_elem_irrel.
do 2 eexists; mauto.
- match goal with
| _: per_bot m ?n |- _ =>
rename n into m'
end.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΓℕ.
handle_per_ctx_env_irrel.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp_rev: destruct_rel_by_assumption env_relΓ).
invert_rel_typ_body.
match goal with
| _: env_relΓ ρ ?ρ0 |- _ =>
rename ρ0 into ρ'
end.
assert {{ Dom ⇑ a m ≈ ⇑ a' m' ∈ per_nat }} by (econstructor; eassumption).
assert {{ Dom ρ ↦ ⇑ a m ≈ ρ' ↦ ⇑ a' m' ∈ env_relΓℕ }} as HinΓℕ by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΓℕ)).
destruct_by_head per_univ.
destruct_by_head rel_exp.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
do 2 eexists.
repeat split; only 1-2: mauto.
eapply per_bot_then_per_elem; [eassumption |].
eapply eval_natrec_neut; eauto.
+ assert {{ EF Γ, ℕ ≈ Γ, ℕ ∈ per_ctx_env ↘ env_relΓℕ }} by (per_ctx_env_econstructor; eauto).
eexists_rel_exp_of_typ.
apply_relation_equivalence.
eauto.
+ eexists_rel_exp_of_sub_id_zero.
eauto.
Qed.
Lemma rel_exp_natrec_cong_rel_typ: forall {Γ A A' i M M' env_relΓ},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ Γ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Γ ⊨ M ≈ M' : ℕ }} ->
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}) n n',
{{ ⟦ M ⟧ ρ ↘ n }} ->
{{ ⟦ M' ⟧ ρ' ↘ n' }} ->
exists elem_rel,
rel_typ i A d{{{ ρ ↦ n }}} A d{{{ ρ' ↦ n' }}} elem_rel.
Proof.
intros.
assert {{ ⊨ Γ }} by (eexists; eauto).
assert {{ Γ ⊨ ℕ : Type@0 }} by mauto.
assert {{ Γ ⊨ M ≈ M' : ℕ[Id] }} by mauto 4.
assert {{ Γ ⊨s Id,,M ≈ Id,,M' : Γ, ℕ }} by mauto.
assert {{ Γ ⊨s Id,,M : Γ, ℕ }} by mauto.
assert {{ Γ ⊨ A[Id,,M] ≈ A[Id,,M'] : Type@i[Id,,M] }} by mauto.
assert {{ Γ ⊨ A[Id,,M] ≈ A[Id,,M'] : Type@i }} as []%rel_exp_of_typ_inversion1 by mauto.
destruct_conjs.
handle_per_ctx_env_irrel.
(on_all_hyp_rev: destruct_rel_by_assumption env_relΓ).
destruct_by_head per_univ.
invert_rel_typ_body.
apply rel_exp_implies_rel_typ.
econstructor; mauto.
Qed.
Lemma rel_exp_natrec_cong : forall {Γ MZ MZ' MS MS' A A' i M M'},
{{ Γ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Γ ⊨ MZ ≈ MZ' : A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊨ MS ≈ MS' : A[Wk∘Wk,,succ(#1)] }} ->
{{ Γ ⊨ M ≈ M' : ℕ }} ->
{{ Γ ⊨ rec M return A | zero -> MZ | succ -> MS end ≈ rec M' return A' | zero -> MZ' | succ -> MS' end : A[Id,,M] }}.
Proof.
intros * HAA' ? ? [env_relΓ]%rel_exp_of_nat_inversion.
destruct_conjs.
pose env_relΓ.
assert {{ Γ ⊨ M : ℕ }} by (unfold valid_exp_under_ctx; etransitivity; [| symmetry]; eauto using rel_exp_of_nat).
assert {{ Γ ⊨ M : ℕ }} as []%rel_exp_of_nat_inversion by eassumption.
destruct_conjs.
handle_per_ctx_env_irrel.
eexists_rel_exp_of_sub_id_N.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
functional_eval_rewrite_clear.
assert (exists elem_rel, rel_typ i A d{{{ ρ ↦ m }}} A d{{{ ρ' ↦ m' }}} elem_rel) as [elem_rel]
by mauto using rel_exp_natrec_cong_rel_typ.
assert (exists elem_rel, rel_typ i A d{{{ ρ ↦ m }}} A d{{{ ρ' ↦ m'0 }}} elem_rel) as []
by mauto using rel_exp_natrec_cong_rel_typ.
do 2 eexists.
repeat split; [eassumption | eassumption |].
eexists.
split; [eassumption |].
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
assert (exists r r',
{{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ r }} /\
{{ rec m'0 ⟦return A' | zero -> MZ' | succ -> MS' end⟧ ρ' ↘ r' }} /\
{{ Dom r ≈ r' ∈ elem_rel }})
by mauto using eval_natrec_rel.
destruct_conjs.
econstructor; only 1-2: econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_natrec_cong : mctt.
Lemma eval_natrec_sub_rel : forall {Γ env_relΓ σ Δ env_relΔ MZ MZ' MS MS' A A' i m m'},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ DF Δ ≈ Δ ∈ per_ctx_env ↘ env_relΔ }} ->
{{ Δ, ℕ ⊨ A ≈ A' : Type@i }} ->
{{ Δ ⊨ MZ ≈ MZ' : A[Id,,zero] }} ->
{{ Δ, ℕ, A ⊨ MS ≈ MS' : A[Wk∘Wk,,succ(#1)] }} ->
{{ Dom m ≈ m' ∈ per_nat }} ->
(forall ρ ρ'
(equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }})
o o' elem_rel,
{{ ⟦ σ ⟧s ρ ↘ o }} ->
{{ ⟦ σ ⟧s ρ' ↘ o' }} ->
{{ Dom o ≈ o' ∈ env_relΔ }} ->
rel_typ i A d{{{ o ↦ m }}} A d{{{ o' ↦ m' }}} elem_rel ->
exists r r',
{{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ o ↘ r }} /\
{{ rec m' ⟦return A'[q σ] | zero -> MZ'[σ] | succ -> MS'[q (q σ)] end⟧ ρ' ↘ r' }} /\
{{ Dom r ≈ r' ∈ elem_rel }}).
Proof.
intros * equiv_Γ_Γ equiv_Δ_Δ HA HMZ HMS equiv_m_m'.
induction equiv_m_m'; intros;
apply rel_exp_of_typ_inversion1 in HA as [env_relΔℕ];
apply rel_exp_of_sub_id_zero_inversion in HMZ as [];
destruct_conjs;
pose env_relΔℕ.
- handle_per_ctx_env_irrel.
invert_per_ctx_envs.
handle_per_ctx_env_irrel.
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
destruct_by_head rel_typ.
destruct_by_head rel_exp.
handle_per_univ_elem_irrel.
do 2 eexists; repeat split; only 1-2: econstructor; mauto.
- match goal with
| _: per_nat m ?n |- _ =>
rename n into m'
end.
assert {{ Δ, ℕ ⊨ A ≈ A : Type@i }} as []%rel_exp_of_typ_inversion1 by (etransitivity; mauto).
apply rel_exp_of_sub_wkwk_succ_var1_inversion in HMS as [env_relΔℕA].
destruct_conjs.
pose env_relΔℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΔℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΔℕ.
handle_per_ctx_env_irrel.
(on_all_hyp_rev: destruct_rel_by_assumption env_relΔ).
destruct_by_head rel_typ.
invert_rel_typ_body.
match goal with
| _: {{ ⟦ σ ⟧s ρ ↘ ^?ρ1 }},
_: {{ ⟦ σ ⟧s ρ' ↘ ^?ρ2 }} |- _ =>
rename ρ1 into ρσ;
rename ρ2 into ρ'σ
end.
assert {{ Dom ρσ ↦ m ≈ ρ'σ ↦ m' ∈ env_relΔℕ }} by (apply_relation_equivalence; mauto).
(on_all_hyp: destruct_rel_by_assumption env_relΔℕ).
assert {{ Dom ρσ ↦ m ≈ ρ'σ ↦ m' ∈ env_relΔℕ }} as HinΔℕ by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΔℕ)).
destruct_by_head per_univ.
unshelve epose proof (IHequiv_m_m' _ _ equiv_ρ_ρ' _ _ _ _ _ _ _) as [? [? [? []]]]; shelve_unifiable; only 4: solve [mauto]; eauto.
handle_per_univ_elem_irrel.
match goal with
| _: {{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ^_ ↘ ^?r0 }},
_: {{ rec m' ⟦return A'[q σ] | zero -> MZ'[σ] | succ -> MS'[q (q σ)] end⟧ ^_ ↘ ^?r0' }} |- _ =>
rename r0 into rm;
rename r0' into rm'
end.
assert {{ Dom ρσ ↦ m ↦ rm ≈ ρ'σ ↦ m' ↦ rm' ∈ env_relΔℕA }} as HinΔℕA by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΔℕA)).
destruct_conjs.
destruct_by_head rel_typ.
destruct_by_head rel_exp.
handle_per_univ_elem_irrel.
do 2 eexists; repeat split; only 1-2: repeat econstructor; mauto.
- match goal with
| _: per_bot m ?n |- _ =>
rename n into m'
end.
handle_per_ctx_env_irrel.
invert_per_ctx_envs.
handle_per_ctx_env_irrel.
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
(on_all_hyp_rev: destruct_rel_by_assumption env_relΔ).
invert_rel_typ_body.
match goal with
| _: {{ ⟦ σ ⟧s ρ ↘ ^?ρ1 }},
_: {{ ⟦ σ ⟧s ρ' ↘ ^?ρ2 }} |- _ =>
rename ρ1 into ρσ;
rename ρ2 into ρ'σ
end.
assert {{ Dom ⇑ a m ≈ ⇑ a' m' ∈ per_nat }} by (econstructor; eassumption).
assert {{ Dom ρσ ↦ ⇑ a m ≈ ρ'σ ↦ ⇑ a' m' ∈ env_relΔℕ }} as HinΔℕ by (apply_relation_equivalence; mauto).
apply_relation_equivalence.
(on_all_hyp: fun H => directed destruct (H _ _ HinΔℕ)).
destruct_by_head per_univ.
destruct_by_head rel_exp.
destruct_by_head rel_typ.
handle_per_univ_elem_irrel.
do 2 eexists.
repeat split; only 1-2: repeat econstructor; mauto.
eapply per_bot_then_per_elem; [eassumption |].
eapply eval_natrec_sub_neut; only 7: eauto; eauto.
+ assert {{ EF Δ, ℕ ≈ Δ, ℕ ∈ per_ctx_env ↘ env_relΔℕ }} by (per_ctx_env_econstructor; eauto).
eexists_rel_exp_of_typ.
apply_relation_equivalence.
eauto.
+ eexists_rel_exp_of_sub_id_zero.
eauto.
Qed.
Lemma rel_exp_natrec_sub_rel_typ: forall {Γ σ Δ A i M env_relΓ},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ Γ ⊨s σ : Δ }} ->
{{ Δ, ℕ ⊨ A : Type@i }} ->
{{ Δ ⊨ M : ℕ }} ->
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}),
exists elem_rel,
rel_typ i {{{ A[σ,,M[σ]] }}} ρ {{{ A[σ,,M[σ]] }}} ρ' elem_rel.
Proof.
intros.
assert {{ ⊨ Γ }} by (eexists; eauto).
assert {{ ⊨ Δ }} by (eapply presup_rel_sub; eauto).
assert {{ Γ ⊨ M[σ] : ℕ[σ] }} by mauto.
assert {{ Δ ⊨ ℕ : Type@0 }} by mauto.
assert {{ Γ ⊨s σ,,M[σ] : Δ, ℕ }} by mauto.
assert {{ Γ ⊨ A[σ,,M[σ]] : Type@i[σ,,M[σ]] }} by mauto.
assert {{ Γ ⊨ A[σ,,M[σ]] : Type@i }} as []%rel_exp_of_typ_inversion1 by mauto.
destruct_conjs.
handle_per_ctx_env_irrel.
mauto.
Qed.
Lemma rel_exp_natrec_sub : forall {Γ σ Δ MZ MS A i M},
{{ Γ ⊨s σ : Δ }} ->
{{ Δ, ℕ ⊨ A : Type@i }} ->
{{ Δ ⊨ MZ : A[Id,,zero] }} ->
{{ Δ, ℕ, A ⊨ MS : A[Wk∘Wk,,succ(#1)] }} ->
{{ Δ ⊨ M : ℕ }} ->
{{ Γ ⊨ rec M return A | zero -> MZ | succ -> MS end[σ] ≈ rec M[σ] return A[q σ] | zero -> MZ[σ] | succ -> MS[q (q σ)] end : A[σ,,M[σ]] }}.
Proof.
intros * [env_relΓ [? [env_relΔ]]] HA ? ? []%rel_exp_of_nat_inversion.
destruct_conjs.
handle_per_ctx_env_irrel.
eexists_rel_exp.
intros.
assert (exists elem_rel, rel_typ i {{{ A[σ,,M[σ]] }}} ρ {{{ A[σ,,M[σ]] }}} ρ' elem_rel) as [elem_rel]
by (eapply rel_exp_natrec_sub_rel_typ; only 5: eassumption; mauto; eexists; mauto).
eexists.
split; [eassumption |].
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
(on_all_hyp: destruct_rel_by_assumption env_relΔ).
destruct_by_head rel_typ.
invert_rel_typ_body.
match goal with
| _: {{ ⟦ σ ⟧s ^?ρ0 ↘ ^?ρσ0 }},
_: {{ ⟦ A ⟧ ρσ ↦ ^?m0 ↘ ^?a0 }},
_: {{ ⟦ A ⟧ ^?ρσ0 ↦ ^?m0' ↘ ^?a0' }} |- _ =>
rename ρ0 into ρ';
rename ρσ0 into ρ'σ;
rename a0 into a;
rename m0 into m;
rename a0' into a';
rename m0' into m'
end.
enough (exists r r',
{{ rec m ⟦return A | zero -> MZ | succ -> MS end⟧ ρσ ↘ r }} /\
{{ rec m' ⟦return A[q σ] | zero -> MZ[σ] | succ -> MS[q (q σ)] end⟧ ρ' ↘ r' }} /\
{{ Dom r ≈ r' ∈ elem_rel }})
by (destruct_conjs; econstructor; mauto).
mauto 4 using eval_natrec_sub_rel.
Qed.
#[export]
Hint Resolve rel_exp_natrec_sub : mctt.
Lemma rel_exp_nat_beta_zero : forall {Γ MZ MS A},
{{ Γ ⊨ MZ : A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊨ MS : A[Wk∘Wk,,succ(#1)] }} ->
{{ Γ ⊨ rec zero return A | zero -> MZ | succ -> MS end ≈ MZ : A[Id,,zero] }}.
Proof.
intros * [env_relΓ]%rel_exp_of_sub_id_zero_inversion [env_relΓℕA]%rel_exp_of_sub_wkwk_succ_var1_inversion.
destruct_conjs.
assert {{ ⊨ Γ, ℕ }} as [env_relΓℕ] by (invert_per_ctx_envs_of env_relΓℕA; eexists; eauto).
destruct_conjs.
pose env_relΓℕ.
pose env_relΓℕA.
invert_per_ctx_envs_of env_relΓℕA.
handle_per_ctx_env_irrel.
invert_per_ctx_envs_of env_relΓℕ.
eexists_rel_exp_of_sub_id_zero.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
destruct_by_head rel_typ.
invert_rel_typ_body.
destruct_by_head rel_exp.
match goal with
| _: env_relΓ ρ ?ρ0 |- _ =>
rename ρ0 into ρ'
end.
assert {{ Dom zero ≈ zero ∈ per_nat }} by econstructor.
assert {{ Dom ρ ↦ zero ≈ ρ' ↦ zero ∈ env_relΓℕ }} by (apply_relation_equivalence; mauto 3).
(on_all_hyp: destruct_rel_by_assumption env_relΓℕ).
handle_per_univ_elem_irrel.
eexists.
split; econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_nat_beta_zero : mctt.
Lemma rel_exp_nat_beta_succ_rel_typ : forall {Γ env_relΓ A i M},
{{ DF Γ ≈ Γ ∈ per_ctx_env ↘ env_relΓ }} ->
{{ Γ, ℕ ⊨ A : Type@i }} ->
{{ Γ ⊨ M : ℕ }} ->
forall ρ ρ' (equiv_ρ_ρ' : {{ Dom ρ ≈ ρ' ∈ env_relΓ }}),
exists elem_rel,
rel_typ i {{{ A[Id,,succ M] }}} ρ {{{ A[Id,,succ M] }}} ρ' elem_rel.
Proof.
intros.
assert {{ ⊨ Γ }} by (eexists; eauto).
assert {{ Γ ⊨ ℕ : Type@0 }} by mauto.
assert {{ Γ ⊨ ℕ ≈ ℕ[Id] : Type@0 }} by mauto.
assert {{ Γ ⊨ succ M : ℕ[Id] }} by mauto.
assert {{ Γ ⊨s Id,,succ M : Γ, ℕ }} by mauto.
assert {{ Γ ⊨ A[Id,,succ M] : Type@i }} as []%rel_exp_of_typ_inversion1 by mauto.
destruct_conjs.
handle_per_ctx_env_irrel.
(on_all_hyp_rev: destruct_rel_by_assumption env_relΓ).
invert_rel_typ_body.
mauto.
Qed.
Lemma rel_exp_nat_beta_succ : forall {Γ MZ MS A i M},
{{ Γ, ℕ ⊨ A : Type@i }} ->
{{ Γ ⊨ MZ : A[Id,,zero] }} ->
{{ Γ, ℕ, A ⊨ MS : A[Wk∘Wk,,succ(#1)] }} ->
{{ Γ ⊨ M : ℕ }} ->
{{ Γ ⊨ rec succ M return A | zero -> MZ | succ -> MS end ≈ MS[Id,,M,,rec M return A | zero -> MZ | succ -> MS end] : A[Id,,succ M] }}.
Proof.
intros * HA ? ? [env_relΓ]%rel_exp_of_nat_inversion.
destruct_conjs.
eexists_rel_exp.
intros.
(on_all_hyp: destruct_rel_by_assumption env_relΓ).
assert (exists elem_rel,
rel_typ i {{{ A[Id,,succ M] }}} ρ {{{ A[Id,,succ M] }}} ρ' elem_rel) as [elem_rel]
by (eapply rel_exp_nat_beta_succ_rel_typ; mauto).
eexists; split; [eassumption |].
destruct_by_head rel_typ.
invert_rel_typ_body.
match goal with
| _: env_relΓ ρ ?ρ0 |- _ =>
rename ρ0 into ρ'
end.
assert (exists r r',
{{ rec succ m ⟦return A | zero -> MZ | succ -> MS end⟧ ρ ↘ r }} /\
{{ rec succ m' ⟦return A | zero -> MZ | succ -> MS end⟧ ρ' ↘ r' }} /\
{{ Dom r ≈ r' ∈ elem_rel }})
by (eapply eval_natrec_rel; mauto).
destruct_conjs.
dir_inversion_by_head eval_natrec; subst.
econstructor; mauto.
Qed.
#[export]
Hint Resolve rel_exp_nat_beta_succ : mctt.