Mctt.Core.Semantic.Consequences
From Mctt Require Import LibTactics.
From Mctt.Core Require Import Base.
From Mctt.Core Require Export Soundness.
From Mctt.Core.Completeness.Consequences Require Export Types.
Import Domain_Notations.
Lemma idempotent_nbe_ty : forall {Γ i A B C},
{{ Γ ⊢ A : Type@i }} ->
nbe_ty Γ A B ->
nbe_ty Γ B C ->
B = C.
Proof.
intros.
assert {{ Γ ⊢ A ≈ B : Type@i }} as [? []]%completeness_ty by mauto 2 using soundness_ty'.
functional_nbe_rewrite_clear.
reflexivity.
Qed.
#[export]
Hint Resolve idempotent_nbe_ty : mctt.
Lemma adjust_exp_eq_level : forall {Γ A A' i j},
{{ Γ ⊢ A ≈ A' : Type@i }} ->
{{ Γ ⊢ A : Type@j }} ->
{{ Γ ⊢ A' : Type@j }} ->
{{ Γ ⊢ A ≈ A' : Type@j }}.
Proof.
intros * ?%completeness_ty ?%soundness ?%soundness.
destruct_conjs.
dir_inversion_by_head nbe; dir_inversion_by_head nbe_ty; subst.
match_by_head eval_exp ltac:(fun H => progressive_invert H).
match_by_head read_nf ltac:(fun H => progressive_invert H).
functional_initial_env_rewrite_clear.
functional_eval_rewrite_clear.
functional_read_rewrite_clear.
etransitivity; [| symmetry]; eauto.
Qed.
Lemma exp_eq_pi_inversion : forall {Γ A B A' B' i},
{{ Γ ⊢ Π A B ≈ Π A' B' : Type@i }} ->
{{ Γ ⊢ A ≈ A' : Type@i }} /\ {{ Γ, A ⊢ B ≈ B' : Type@i }}.
Proof.
intros * H.
gen_presups.
(on_all_hyp: fun H => apply wf_pi_inversion' in H; destruct H).
(on_all_hyp: fun H => apply completeness_ty in H).
(on_all_hyp: fun H => pose proof (soundness H)).
destruct_conjs.
dir_inversion_clear_by_head nbe.
dir_inversion_clear_by_head nbe_ty.
dir_inversion_by_head initial_env; subst.
functional_initial_env_rewrite_clear.
invert_rel_typ_body.
dir_inversion_clear_by_head read_nf.
dir_inversion_by_head read_typ; subst.
functional_eval_rewrite_clear.
functional_read_rewrite_clear.
autoinjections.
assert {{ Γ ⊢ A' ≈ A : Type@i }} by mauto 3.
assert {{ ⊢ Γ, A' ≈ Γ, A }} by mauto 3.
split; [mauto 3 |].
etransitivity; [| symmetry]; mauto 2.
Qed.
Lemma nf_of_pi : forall {Γ M A B},
{{ Γ ⊢ M : Π A B }} ->
exists W1 W2, nbe Γ M {{{ Π A B }}} n{{{ λ W1 W2 }}}.
Proof.
intros * [? []]%soundness.
dir_inversion_clear_by_head nbe.
invert_rel_typ_body.
dir_inversion_clear_by_head read_nf.
do 2 eexists; mauto 4.
Qed.
#[export]
Hint Resolve nf_of_pi : mctt.
Theorem canonical_form_of_pi : forall {M A B},
{{ ⋅ ⊢ M : Π A B }} ->
exists W1 W2, nbe {{{ ⋅ }}} M {{{ Π A B }}} n{{{ λ W1 W2 }}}.
Proof. mauto 3. Qed.
#[export]
Hint Resolve canonical_form_of_pi : mctt.
Inductive canonical_nat : nf -> Prop :=
| canonical_nat_zero : canonical_nat n{{{ zero }}}
| canonical_nat_succ : forall W, canonical_nat W -> canonical_nat n{{{ succ W }}}
.
#[export]
Hint Constructors canonical_nat : mctt.
Theorem canonical_form_of_nat : forall {M},
{{ ⋅ ⊢ M : ℕ }} ->
exists W, nbe {{{ ⋅ }}} M {{{ ℕ }}} W /\ canonical_nat W.
Proof with mautosolve 4.
intros * [? []]%soundness.
eexists; split; [eassumption |].
dir_inversion_clear_by_head nbe.
invert_rel_typ_body.
match_by_head1 eval_exp ltac:(fun H => clear H).
gen M.
match_by_head1 read_nf ltac:(fun H => dependent induction H);
intros; mauto 3;
gen_presups.
- eassert ({{ ⋅ ⊢ ^_ : ℕ }} /\ {{ ⋅ ⊢ ℕ ⊆ ℕ }}) as [? _]...
- match_by_head1 (wf_exp {{{ ⋅ }}} {{{ ℕ }}}) ltac:(fun H => contradict H)...
Qed.
#[export]
Hint Resolve canonical_form_of_nat : mctt.
Theorem canonical_form_of_typ : forall {i M},
{{ ⋅ ⊢ M : Type@i }} ->
exists W, nbe {{{ ⋅ }}} M {{{ Type@i }}} W /\ is_typ_constr W /\ (forall V, W <> n{{{ ⇑ V }}}).
Proof with mautosolve 4.
intros * [? []]%soundness.
eexists; split; [eassumption |].
dir_inversion_clear_by_head nbe.
invert_rel_typ_body.
match_by_head1 eval_exp ltac:(fun H => clear H).
gen M.
dir_inversion_clear_by_head read_nf.
match_by_head1 read_typ ltac:(fun H => dependent induction H);
intros; split; intros; mauto 3; try congruence;
gen_presups;
match_by_head1 (wf_exp {{{ ⋅ }}} {{{ Type@i }}}) ltac:(fun H => contradict H)...
Qed.
#[export]
Hint Resolve canonical_form_of_typ : mctt.
Lemma subtyp_spec : forall {Γ A B},
{{ Γ ⊢ A ⊆ B }} ->
(exists k, {{ Γ ⊢ A ≈ B : Type@k }}) \/
(exists i j, (exists k, {{ Γ ⊢ A ≈ Type@i : Type@k }}) /\ (exists k, {{ Γ ⊢ Type@j ≈ B : Type@k }}) /\ i <= j) \/
(exists A1 A2 B1 B2, (exists k, {{ Γ ⊢ A ≈ Π A1 A2 : Type@k }}) /\ (exists k, {{ Γ ⊢ Π B1 B2 ≈ B : Type@k }}) /\ (exists k, {{ Γ ⊢ A1 ≈ B1 : Type@k }}) /\ {{ Γ, B1 ⊢ A2 ⊆ B2 }}).
Proof with (congruence + firstorder (mautosolve 4 + lia)).
induction 1; mauto 3.
- destruct_all; firstorder (mauto 3);
try (right; right; do 4 eexists; firstorder mautosolve 3).
+ match goal with
| _: {{ Γ ⊢ M' ≈ Type@?i : Type@_ }},
_: {{ Γ ⊢ Type@?j ≈ M' : Type@_ }} |- _ =>
assert {{ Γ ⊢ Type@j ≈ Type@i : Type@_ }} by mauto 3;
assert (j = i) as -> by mauto 3
end...
+ assert {{ Γ ⊢ Π ^_ ^_ ≈ Type@_ : Type@_ }} by mauto 3.
assert ({{{ Π ^_ ^_ }}} = {{{ Type@_ }}}) by mauto 3...
+ assert {{ Γ ⊢ Π ^_ ^_ ≈ Type@_ : Type@_ }} by mauto 3.
assert ({{{ Π ^_ ^_ }}} = {{{ Type@_ }}}) by mauto 3...
+ match goal with
| _: {{ Γ ⊢ M' ≈ Π ^?A1 ^?A2 : Type@_ }},
_: {{ Γ ⊢ Π ^?B1 ^?B2 ≈ M' : Type@_ }} |- _ =>
assert {{ Γ ⊢ Π A1 A2 ≈ Π B1 B2 : Type@_ }} by mauto 3;
assert ({{ Γ ⊢ A1 ≈ B1 : Type@_ }} /\ {{ Γ, A1 ⊢ A2 ≈ B2 : Type@_ }}) as [] by mauto 3 using exp_eq_pi_inversion
end.
assert {{ ⊢ Γ ≈ Γ }} by mauto 3.
right; right.
do 4 eexists; repeat split; mauto 3.
* eexists; eapply exp_eq_trans_typ_max...
* etransitivity; [| eassumption].
etransitivity; eapply ctxeq_subtyp...
- right; left.
do 2 eexists...
- right; right.
do 4 eexists...
Qed.
#[export]
Hint Resolve subtyp_spec : mctt.
Lemma consistency_ne_helper : forall {i A A'} {W : ne},
is_typ_constr A' ->
(forall j, A' <> {{{ Type@j }}}) ->
{{ ⋅, Type@i ⊢ A ⊆ A' }} ->
~ {{ ⋅, Type@i ⊢ W : A }}.
Proof with (congruence + mautosolve 3).
intros * HA' HA'eq Heq HW. gen A'.
dependent induction HW; intros; mauto 3; try directed dependent destruction HA';
try (destruct W; simpl in *; congruence).
- destruct W; simpl in *; autoinjections.
eapply IHHW4; [| | | | mauto 4]...
- destruct W; simpl in *; autoinjections.
eapply IHHW3; [| | | | mauto 4]...
- destruct W; simpl in *; autoinjections.
do 2 match_by_head ctx_lookup ltac:(fun H => dependent destruction H).
assert {{ ⋅, Type@i ⊢ Type@i[Wk] ≈ Type@i : Type@(S i) }} by mauto 3.
eapply subtyp_spec in Heq as [| []]; destruct_conjs;
try (eapply HA'eq; mautosolve 4).
assert {{ ⋅, Type@i ⊢ Type@i ≈ Π ^_ ^_ : Type@_ }} by mauto 3.
assert ({{{ Π ^_ ^_ }}} = {{{ Type@i }}}) by mauto 3...
- destruct W; simpl in *; autoinjections.
eapply IHHW6; [| | | | mauto 4]...
Qed.
Theorem consistency : forall {i} M,
~ {{ ⋅ ⊢ M : Π Type@i #0 }}.
Proof with (congruence + mautosolve 3).
intros * HW.
assert (exists W1 W2, nbe {{{ ⋅ }}} M {{{ Π Type@i #0 }}} n{{{ λ W1 W2 }}}) as [W1 [W2 Hnbe]] by mauto 3.
assert (exists W, nbe {{{ ⋅ }}} M {{{ Π Type@i #0 }}} W /\ {{ ⋅ ⊢ M ≈ W : Π Type@i #0 }}) as [? []] by mauto 3 using soundness.
gen_presups.
functional_nbe_rewrite_clear.
dependent destruction Hnbe.
invert_rel_typ_body.
match_by_head read_nf ltac:(fun H => directed dependent destruction H).
match_by_head read_typ ltac:(fun H => directed dependent destruction H).
invert_rel_typ_body.
match_by_head read_nf ltac:(fun H => directed dependent destruction H).
simpl in *.
assert (exists B, {{ ⋅, Type@i ⊢ M0 : B }} /\ {{ ⋅ ⊢ Π Type@i B ⊆ Π Type@i #0 }}) as [B [? [| [|]]%subtyp_spec]] by mauto 3;
destruct_conjs;
try assert ({{{ Π ^_ ^_ }}} = {{{ Type@_ }}}) by mauto 3;
try congruence.
- assert (_ /\ {{ ^_ ⊢ B ≈ #0 : ^_ }}) as [_ ?] by mauto 3 using exp_eq_pi_inversion.
eapply consistency_ne_helper...
- assert (_ /\ {{ ^_ ⊢ B ≈ ^_ : ^_ }}) as [_ ?] by mauto 3 using exp_eq_pi_inversion.
assert (_ /\ {{ ^_ ⊢ ^_ ≈ #0 : ^_ }}) as [? ?] by mauto 3 using exp_eq_pi_inversion.
assert {{ ^_ ⊢ B ⊆ #0 }} by (etransitivity; [| eapply ctxeq_subtyp]; mauto 4).
eapply consistency_ne_helper...
Qed.
From Mctt.Core Require Import Base.
From Mctt.Core Require Export Soundness.
From Mctt.Core.Completeness.Consequences Require Export Types.
Import Domain_Notations.
Lemma idempotent_nbe_ty : forall {Γ i A B C},
{{ Γ ⊢ A : Type@i }} ->
nbe_ty Γ A B ->
nbe_ty Γ B C ->
B = C.
Proof.
intros.
assert {{ Γ ⊢ A ≈ B : Type@i }} as [? []]%completeness_ty by mauto 2 using soundness_ty'.
functional_nbe_rewrite_clear.
reflexivity.
Qed.
#[export]
Hint Resolve idempotent_nbe_ty : mctt.
Lemma adjust_exp_eq_level : forall {Γ A A' i j},
{{ Γ ⊢ A ≈ A' : Type@i }} ->
{{ Γ ⊢ A : Type@j }} ->
{{ Γ ⊢ A' : Type@j }} ->
{{ Γ ⊢ A ≈ A' : Type@j }}.
Proof.
intros * ?%completeness_ty ?%soundness ?%soundness.
destruct_conjs.
dir_inversion_by_head nbe; dir_inversion_by_head nbe_ty; subst.
match_by_head eval_exp ltac:(fun H => progressive_invert H).
match_by_head read_nf ltac:(fun H => progressive_invert H).
functional_initial_env_rewrite_clear.
functional_eval_rewrite_clear.
functional_read_rewrite_clear.
etransitivity; [| symmetry]; eauto.
Qed.
Lemma exp_eq_pi_inversion : forall {Γ A B A' B' i},
{{ Γ ⊢ Π A B ≈ Π A' B' : Type@i }} ->
{{ Γ ⊢ A ≈ A' : Type@i }} /\ {{ Γ, A ⊢ B ≈ B' : Type@i }}.
Proof.
intros * H.
gen_presups.
(on_all_hyp: fun H => apply wf_pi_inversion' in H; destruct H).
(on_all_hyp: fun H => apply completeness_ty in H).
(on_all_hyp: fun H => pose proof (soundness H)).
destruct_conjs.
dir_inversion_clear_by_head nbe.
dir_inversion_clear_by_head nbe_ty.
dir_inversion_by_head initial_env; subst.
functional_initial_env_rewrite_clear.
invert_rel_typ_body.
dir_inversion_clear_by_head read_nf.
dir_inversion_by_head read_typ; subst.
functional_eval_rewrite_clear.
functional_read_rewrite_clear.
autoinjections.
assert {{ Γ ⊢ A' ≈ A : Type@i }} by mauto 3.
assert {{ ⊢ Γ, A' ≈ Γ, A }} by mauto 3.
split; [mauto 3 |].
etransitivity; [| symmetry]; mauto 2.
Qed.
Lemma nf_of_pi : forall {Γ M A B},
{{ Γ ⊢ M : Π A B }} ->
exists W1 W2, nbe Γ M {{{ Π A B }}} n{{{ λ W1 W2 }}}.
Proof.
intros * [? []]%soundness.
dir_inversion_clear_by_head nbe.
invert_rel_typ_body.
dir_inversion_clear_by_head read_nf.
do 2 eexists; mauto 4.
Qed.
#[export]
Hint Resolve nf_of_pi : mctt.
Theorem canonical_form_of_pi : forall {M A B},
{{ ⋅ ⊢ M : Π A B }} ->
exists W1 W2, nbe {{{ ⋅ }}} M {{{ Π A B }}} n{{{ λ W1 W2 }}}.
Proof. mauto 3. Qed.
#[export]
Hint Resolve canonical_form_of_pi : mctt.
Inductive canonical_nat : nf -> Prop :=
| canonical_nat_zero : canonical_nat n{{{ zero }}}
| canonical_nat_succ : forall W, canonical_nat W -> canonical_nat n{{{ succ W }}}
.
#[export]
Hint Constructors canonical_nat : mctt.
Theorem canonical_form_of_nat : forall {M},
{{ ⋅ ⊢ M : ℕ }} ->
exists W, nbe {{{ ⋅ }}} M {{{ ℕ }}} W /\ canonical_nat W.
Proof with mautosolve 4.
intros * [? []]%soundness.
eexists; split; [eassumption |].
dir_inversion_clear_by_head nbe.
invert_rel_typ_body.
match_by_head1 eval_exp ltac:(fun H => clear H).
gen M.
match_by_head1 read_nf ltac:(fun H => dependent induction H);
intros; mauto 3;
gen_presups.
- eassert ({{ ⋅ ⊢ ^_ : ℕ }} /\ {{ ⋅ ⊢ ℕ ⊆ ℕ }}) as [? _]...
- match_by_head1 (wf_exp {{{ ⋅ }}} {{{ ℕ }}}) ltac:(fun H => contradict H)...
Qed.
#[export]
Hint Resolve canonical_form_of_nat : mctt.
Theorem canonical_form_of_typ : forall {i M},
{{ ⋅ ⊢ M : Type@i }} ->
exists W, nbe {{{ ⋅ }}} M {{{ Type@i }}} W /\ is_typ_constr W /\ (forall V, W <> n{{{ ⇑ V }}}).
Proof with mautosolve 4.
intros * [? []]%soundness.
eexists; split; [eassumption |].
dir_inversion_clear_by_head nbe.
invert_rel_typ_body.
match_by_head1 eval_exp ltac:(fun H => clear H).
gen M.
dir_inversion_clear_by_head read_nf.
match_by_head1 read_typ ltac:(fun H => dependent induction H);
intros; split; intros; mauto 3; try congruence;
gen_presups;
match_by_head1 (wf_exp {{{ ⋅ }}} {{{ Type@i }}}) ltac:(fun H => contradict H)...
Qed.
#[export]
Hint Resolve canonical_form_of_typ : mctt.
Lemma subtyp_spec : forall {Γ A B},
{{ Γ ⊢ A ⊆ B }} ->
(exists k, {{ Γ ⊢ A ≈ B : Type@k }}) \/
(exists i j, (exists k, {{ Γ ⊢ A ≈ Type@i : Type@k }}) /\ (exists k, {{ Γ ⊢ Type@j ≈ B : Type@k }}) /\ i <= j) \/
(exists A1 A2 B1 B2, (exists k, {{ Γ ⊢ A ≈ Π A1 A2 : Type@k }}) /\ (exists k, {{ Γ ⊢ Π B1 B2 ≈ B : Type@k }}) /\ (exists k, {{ Γ ⊢ A1 ≈ B1 : Type@k }}) /\ {{ Γ, B1 ⊢ A2 ⊆ B2 }}).
Proof with (congruence + firstorder (mautosolve 4 + lia)).
induction 1; mauto 3.
- destruct_all; firstorder (mauto 3);
try (right; right; do 4 eexists; firstorder mautosolve 3).
+ match goal with
| _: {{ Γ ⊢ M' ≈ Type@?i : Type@_ }},
_: {{ Γ ⊢ Type@?j ≈ M' : Type@_ }} |- _ =>
assert {{ Γ ⊢ Type@j ≈ Type@i : Type@_ }} by mauto 3;
assert (j = i) as -> by mauto 3
end...
+ assert {{ Γ ⊢ Π ^_ ^_ ≈ Type@_ : Type@_ }} by mauto 3.
assert ({{{ Π ^_ ^_ }}} = {{{ Type@_ }}}) by mauto 3...
+ assert {{ Γ ⊢ Π ^_ ^_ ≈ Type@_ : Type@_ }} by mauto 3.
assert ({{{ Π ^_ ^_ }}} = {{{ Type@_ }}}) by mauto 3...
+ match goal with
| _: {{ Γ ⊢ M' ≈ Π ^?A1 ^?A2 : Type@_ }},
_: {{ Γ ⊢ Π ^?B1 ^?B2 ≈ M' : Type@_ }} |- _ =>
assert {{ Γ ⊢ Π A1 A2 ≈ Π B1 B2 : Type@_ }} by mauto 3;
assert ({{ Γ ⊢ A1 ≈ B1 : Type@_ }} /\ {{ Γ, A1 ⊢ A2 ≈ B2 : Type@_ }}) as [] by mauto 3 using exp_eq_pi_inversion
end.
assert {{ ⊢ Γ ≈ Γ }} by mauto 3.
right; right.
do 4 eexists; repeat split; mauto 3.
* eexists; eapply exp_eq_trans_typ_max...
* etransitivity; [| eassumption].
etransitivity; eapply ctxeq_subtyp...
- right; left.
do 2 eexists...
- right; right.
do 4 eexists...
Qed.
#[export]
Hint Resolve subtyp_spec : mctt.
Lemma consistency_ne_helper : forall {i A A'} {W : ne},
is_typ_constr A' ->
(forall j, A' <> {{{ Type@j }}}) ->
{{ ⋅, Type@i ⊢ A ⊆ A' }} ->
~ {{ ⋅, Type@i ⊢ W : A }}.
Proof with (congruence + mautosolve 3).
intros * HA' HA'eq Heq HW. gen A'.
dependent induction HW; intros; mauto 3; try directed dependent destruction HA';
try (destruct W; simpl in *; congruence).
- destruct W; simpl in *; autoinjections.
eapply IHHW4; [| | | | mauto 4]...
- destruct W; simpl in *; autoinjections.
eapply IHHW3; [| | | | mauto 4]...
- destruct W; simpl in *; autoinjections.
do 2 match_by_head ctx_lookup ltac:(fun H => dependent destruction H).
assert {{ ⋅, Type@i ⊢ Type@i[Wk] ≈ Type@i : Type@(S i) }} by mauto 3.
eapply subtyp_spec in Heq as [| []]; destruct_conjs;
try (eapply HA'eq; mautosolve 4).
assert {{ ⋅, Type@i ⊢ Type@i ≈ Π ^_ ^_ : Type@_ }} by mauto 3.
assert ({{{ Π ^_ ^_ }}} = {{{ Type@i }}}) by mauto 3...
- destruct W; simpl in *; autoinjections.
eapply IHHW6; [| | | | mauto 4]...
Qed.
Theorem consistency : forall {i} M,
~ {{ ⋅ ⊢ M : Π Type@i #0 }}.
Proof with (congruence + mautosolve 3).
intros * HW.
assert (exists W1 W2, nbe {{{ ⋅ }}} M {{{ Π Type@i #0 }}} n{{{ λ W1 W2 }}}) as [W1 [W2 Hnbe]] by mauto 3.
assert (exists W, nbe {{{ ⋅ }}} M {{{ Π Type@i #0 }}} W /\ {{ ⋅ ⊢ M ≈ W : Π Type@i #0 }}) as [? []] by mauto 3 using soundness.
gen_presups.
functional_nbe_rewrite_clear.
dependent destruction Hnbe.
invert_rel_typ_body.
match_by_head read_nf ltac:(fun H => directed dependent destruction H).
match_by_head read_typ ltac:(fun H => directed dependent destruction H).
invert_rel_typ_body.
match_by_head read_nf ltac:(fun H => directed dependent destruction H).
simpl in *.
assert (exists B, {{ ⋅, Type@i ⊢ M0 : B }} /\ {{ ⋅ ⊢ Π Type@i B ⊆ Π Type@i #0 }}) as [B [? [| [|]]%subtyp_spec]] by mauto 3;
destruct_conjs;
try assert ({{{ Π ^_ ^_ }}} = {{{ Type@_ }}}) by mauto 3;
try congruence.
- assert (_ /\ {{ ^_ ⊢ B ≈ #0 : ^_ }}) as [_ ?] by mauto 3 using exp_eq_pi_inversion.
eapply consistency_ne_helper...
- assert (_ /\ {{ ^_ ⊢ B ≈ ^_ : ^_ }}) as [_ ?] by mauto 3 using exp_eq_pi_inversion.
assert (_ /\ {{ ^_ ⊢ ^_ ≈ #0 : ^_ }}) as [? ?] by mauto 3 using exp_eq_pi_inversion.
assert {{ ^_ ⊢ B ⊆ #0 }} by (etransitivity; [| eapply ctxeq_subtyp]; mauto 4).
eapply consistency_ne_helper...
Qed.